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Abstract—Short-term load forecasting at the distribution level
predicts the load of substations, feeders, transformers, and pos-
sibly customers from half an hour to one week ahead. Effective
forecasting is important for the planning and operation of dis-
tribution systems. The problem, however, is difficult in view of
complicated load features, the large number of distribution-level
nodes, and possible switching operations. In this paper, a new
forecasting approach within the hierarchical structure is pre-
sented to solve these difficulties. Load of the root node at any
user-defined subtree is first forecast by a wavelet neural network
with appropriate inputs. Child nodes categorized as “regular” and
“irregular” based on load pattern similarities are then forecast
separately. Load of a regular child node is simply forecast as the
proportion from the parent node load forecast while the load
of an irregular child node is forecast by an individual neural
network model. Switching operation detection and follow-up
adjustments are also performed to capture abnormal changes and
improve the forecasting accuracy. This new approach captures
load characteristics of nodes at different levels, takes advantage
of pattern similarities between a parent node and its child nodes,
detects abnormalities, and provides high quality forecasts as
demonstrated by two practical datasets.

Index Terms—Distribution system, neural network, pattern sim-
ilarity, short-term load forecasting, switching operation.

I. INTRODUCTION

P OWER distribution systems deliver electricity from distri-
bution substations to residential, commercial, and indus-

trial consumers [1]. A distribution substation is fed from one
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or more transmission or sub-transmission lines and serves mul-
tiple feeders. Distribution transformers receive the power from
one or more feeders and reduce the primary voltage to levels
at which customers can use. In the distribution system when
some branches are overloaded, there is a need to reconfigure
the system by changing the status of line switches to be open or
closed [2]. These reconfigurations by switching operations can
achieve load balance among distribution feeders, relieve over-
loading of the components and reduce system losses [3]–[5].
Short-term load forecasting at the distribution level predicts

the load of substations, feeders, transformers, and possibly cus-
tomers with a typical forecasting horizon ranging from half an
hour to one week [1]. High quality load forecasting is important
for the planning and operation of distribution systems. For in-
stance, substation and feeder forecasts provide utilities with ad-
vanced warnings on potential substation and feeder overloading
[5]. Customer load forecasting helps utilities schedule and dis-
patch community storage batteries to shave peak load in the
smart grid environment [5], [6].
Forecasting the distribution-level load is much more difficult

than forecasting a system-level load such as New England's load
in view of the complicated load features, the large number of
nodes, and the possible switching operations in distribution sys-
tems. Typically, load forecasts of a large area have high accu-
racy because the aggregated load is stable and regular, mainly
resulting from the law of large numbers [7], [8]. However, the
distribution-level load could be dominated by a few large cus-
tomers such as industrial companies or schools [1], [5], and
the load pattern may not be as regular as that of a large area.
Moreover, considering the large number and the different load
features at different distribution levels, usage of a unique fore-
casting model for all nodes may not be accurate. However, if an
individual model were built for each node, it would be compli-
cated and time-consuming for the system operation and main-
tenance. In addition, due to the reconfigurations by switching
operations, load may be temporarily switched from one feeder
to another, which would severely change the distribution-level
load profiles and affect the trend in a certain period. Without an
advance notice to a load forecaster and a follow-up adjustment
of forecasting methods, the forecasting power may be degraded.
To overcome the above difficulties, this paper presents

a generic framework of day-ahead distribution-level load
forecasting within the hierarchical structure. Generally, each
node is fed from one line and the forecaster usually does
not know switching operations in advance, therefore, the
distribution-level load can be forecast within the hierarchical
structure [9], [10] as depicted in Fig. 1. Each node represents
a distribution-level load and the load of a parent node is the
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Fig. 1. Hierarchical structure of the distribution-level load forecasting.

aggregation of its child loads. In our forecasting framework, at
any user-defined subtree, load of the root node is first forecast
by an individual model. Dynamic node classification based on
the load pattern similarities is then applied on each forecast
day to categorize the child nodes as “regular” and “irregular”.
Different load forecasting methods are developed regarding
different types of child nodes. Load forecasts of lower-level
nodes are obtained in the same manner by treating the current
child node as a new parent node. The realized loads are exam-
ined through control ranges generated from forecast means and
standard deviations to detect possible switching operations.
Forecasting methods are then adjusted as needed to improve the
forecasting accuracy for future days. The overall framework
captures load characteristics of nodes at different levels, takes
advantage of the pattern similarities between a parent node and
its child nodes, detects abnormalities, and provides high quality
forecasts with low computational efforts.
In Section III, load forecasting for a root node, node classifi-

cation, and load forecasting for different types of child nodes are
presented. Load of a root node is first forecast by wavelet neural
networks (WNNs) with selected inputs capturing load features
and performing good predictions. With its child nodes classified
as “regular” and “irregular” based on load pattern similarities,
a different method is developed for each category. Load of a
regular child node is directly forecast as a proportion of root
load forecasts by load distribution factor (LDF). For an irreg-
ular node, correlation with a selected sibling node is taken into
account and incorporated into an individual WNN model.
In Section IV, detecting switching operations and adjusting

the forecasting methods are introduced to overcome the diffi-
culties raised from feeder reconfigurations. Statistical Process
Control (SPC) is used to monitor the actual load and detect ab-
normal changes according to load forecast means and standard
deviations. If there is no switching operation, the actual load
generally falls into a normal range. When a switching opera-
tion happens, actual load may exceed the normal range, causing
significant changes to be caught by SPC rules. Because the ab-
normalities may affect the load trend and consequently degrade
the forecasting accuracy, once a switching operation is identi-
fied, the forecasting methods will be adjusted as needed.
Two examples are provided in Section V to verify the ef-

fectiveness of our approach. Example 1 shows the load fore-
casting for one substation and six feeders, examining the effects
of input selection, node classification, forecasting methods for
regular and irregular nodes, and switching operation detection.
Example 2 investigates the load forecasting of one substation

with four feeders and smart meter-based customers. In both ex-
amples, our approach is compared with two naive benchmarks,
two multiple regression models, and a simple neural network
model. Numerical results show that our method outperforms all
comparing models with high forecasting accuracy and low com-
putational efforts.

II. LITERATURE REVIEW

A. Short-Term Load Forecasting for a Large Area

Different methods have been used for short-term load
forecasting for a large area, including parametric and non-para-
metric regression models, Kalman filter, neural networks,
and hybrid methods. Parametric regression models assume
functional forms that describe relationships between load and
affecting factors. The commonly used function models are
explicit time functions, polynomial functions, autoregressive
moving average (ARMA), Fourier series, and multiple linear
regression (MLR). In contrast, non-parametric regression
models do not take predetermined forms but are constructed
according to information derived from the data. In Kalman
filter, load is modeled in the state space formulation consisting
of linear system state equations and measurement equations
[11], [12]. The method is attractive because of the recursive
property of Kalman filter and the standard deviations of fore-
casts obtained as byproducts. The main difficulties in Kalman
filter are the state selection and model identification.
From the late 1980's, much research has been studied on

applying artificial intelligence techniques to load forecasting.
Among these, neural networks (NNs) have been widely used
because of their strong ability to approximate the nonlinear
function through learning historical data [13]. The NNs have
also been combined with other methods to improve the pre-
diction power. A combination of radial basis function neural
networks and adaptive neural fuzzy inference was established
in [14] to forecast load in real-time price environments. A sim-
ilar day-based back propagation neural network was developed
in [15] to forecast the next day load. In this method, similar day
load is selected as NN inputs based on the similarity between
the forecast day's predicted weather and the historical days'
weather. The NNs are commonly trained by back propagation
algorithm. As a first-order steepest decent method, back propa-
gation suffers from slow convergence and may not be efficient
for nonstationary process. The extended Kalman filter (EKF)
has been used to train a NN by treating weights of the network
as the state of a nonlinear dynamic system [16] because of its
strong tracking capability. Since it is a second-order algorithm,
fast convergence is expected. Nevertheless, using EKF in load
forecasting may require much computational effort considering
the high dimensionality of the weights involved. Decoupled
EKF, which is a simplified form of EKF, reduces the computa-
tional time by ignoring some dependency of weights such that
the weight covariance matrix is block diagonal. Among pos-
sible decoupling strategies [17], node-decoupled EKF, in which
each weight group is composed of a single node's weights,
is straightforward and applied to simplify EKF. A NN-based
market clearing price forecaster with node-decoupled EKF
presented in [18] showed good prediction performance and
a significant decrease of the computational time. The above
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methods shed insights on model selection and affecting factor
identification for load forecasting at the distribution level.

B. Short-Term Load Forecasting at the Distribution Level

Many methods have been reported on short-term load fore-
casting at the distribution level. Some researchers focus on fore-
casting one particular substation or feeder, and others forecast a
large number of distribution-level loads together.
Load forecasting of a substation or a feeder encounters high

errors as a result of the complicated load features [19]. Different
load patterns of small regions within a large geographic area
were presented in [20]. Load diversity was quantified in [21]
to represent levels at which regional load affected the overall
system load. In [22], a hybrid method composed of a forecast-
aided state estimator and a NNwas presented for substation load
forecasting. To better track the nonstationary substation load,
outputs of the state estimator were used as initial forecasts and
fed to NN to generate final forecasts. This hybrid method saved
computational effort compared with pure NN methods, how-
ever, considering the large number of distribution-level nodes,
using an individual model for each node may not be effective
for system operations and maintenance.
The following presents general models to forecast loads of

a large number of nodes. In [23], load features of 245 substa-
tions from a national grid were analyzed. Correlation coeffi-
cients with weather factors and day indices showed different
types of sensitivities across substations. Periodic autoregres-
sivemodels were used for short-term substation load forecasting
with monthly, weekly and the intra-daily patterns modeled. In
[24], a semi-parametric load forecasting model was developed
for over 2000 substations in French grid. Using a unique regres-
sion-based model to forecast all time series saves the computa-
tional efforts. However, it is difficult to capture the characteris-
tics of loads at different levels. Furthermore, the above methods
treated each small area or grid component as a separate entity,
and forecasts were produced without any regards to any infor-
mation available from areas outside.
Hierarchical load forecasting is an approach in which load

forecasts at different hierarchy levels are connected. A hierar-
chical forecasting model developed in [9] provided load fore-
casts for system, areas, zones, and substations. The NN-based
forecasting engines were associated at any user-defined nodes.
Load forecasts for other nodes were obtained using aggrega-
tion and load distribution factor (LDF). Conceptually LDF is
the ratio of a child load to its parent load and can be calculated
in several ways. For instance, in [25], LDF for each substation
was forecast individually through a general regression neural
network model. In [10], two types of LDFs were introduced:
a short LDF was calculated by the latest data and used for the
next time instance while a long LDFwas calculated based on the
latest daily data and used for the next day. The above work sim-
plified forecasting procedures for each node with a light compu-
tational effort. Considering that the load pattern of a child node
could be significantly different from that of its parent node, it is
not proper to forecast all child nodes by LDF. Moreover, pattern
similarities may change over time. Thus, a dynamic node clas-
sification method is required to categorize the child nodes and
capture changes of the load patterns.

Fig. 2. An illustration of the novel distribution-level load forecasting method.
In a subtree where Feeder 3 is the root node, nodes with shadowing are forecast
by WNNs and the rest are forecast by LDFs.

Effects of switching operations on distribution-level load
forecasting have been reported in [26] and [27]. A two-stage
bad data identification method was developed in [27] to retrieve
the historical trend of load and to improve the bus load fore-
casting by identifying and restoring inaccurate measurements
and abnormal disturbance. A synergistic integration of Statis-
tical Process Control (SPC) and Kalman filter was presented in
[28] to detect faults of chillers and cooling coils by monitoring
system parameters. The SPC was applied to evaluate variations
of parameter predictions while Kalman filter was used to pro-
vide predictions and adaptive SPC control limits. The above
detection methods captured abnormal changes effectively and
could be adopted to detect switching operations.

III. NEURAL NETWORKS AND LOAD DISTRIBUTION FACTORS

Our new forecasting approach is presented in this section.
Section III-A presents a WNN-based load forecasting method
for a root node. Section III-B describes a criterion to classify
child nodes as “regular” and “irregular” based on load pattern
similarities. The LDF method to forecast load of a regular node
is expressed in Section III-C. Section III-D introduces theWNN
with appropriate inputs for irregular nodes.
As illustrated in Fig. 2, load of the root node Feeder 3 in a

given subtree is first forecast by the WNN. According to the re-
sults of node classification, the forecasts are distributed to reg-
ular nodes (transformers 1 and 3) by using LDF while the load
of the irregular node transformer 2 is forecast by using WNN.
Load forecasts of customers 1–3 are then obtained in the same
manner by treating transformer 2 as a new parent node.

A. Load Forecasting for a Root Node

Previously, we have developed a WNN-based load fore-
casting method for large areas [15], [29]. The structure consists
of similar day-based input selection, multi-level wavelet de-
composition, and individual neural networks for different
frequency components. The forecasting model for a root load
follows this structure with modifications on input selection and
the learning algorithm as depicted in Fig. 3. Inputs to WNNs
include similar day load, previous day load, forecast weather,
and day of week index while outputs are forecast loads of the
next day at all time instances. The wavelet technique is used
to decompose the data into three orthogonal components at
different frequencies: Low-low (LL), Low-high (LH) and High
(H). This process helps capture load features of individual
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Fig. 3. The WNN-based load forecaster for a root node.

Fig. 4. Load versus wind-chill temperature, humidex, and wind speed.

components. Results of individual NNs are then summed to
form the final forecasts.
1) Input Selection: To effectively capture features of the

distribution-level load and forecast the next day load, inputs
are properly selected. Day of week index is an important input
factor because different days of the week have different load
curves. Beyond that, weather is the major driver for load. Fol-
lowing [15], predicted wind-chill temperature and humidex on
the next day are selected as weather input variables in WNNs.
As shown in Fig. 4, approximate piecewise linear relationships
exist between substation load and selected weather factors.
Other weather factors such as wind speed, which has a highly
nonlinear pattern and a weak correlation with the load, are not
selected.
In the method we previously developed for system-level load

forecasting [15], similar day load is selected based on weather
similarity and day of week index. Distribution-level load, which
could be dominated by a few large customers, may vary with
similar weather conditions and the same day of week index.
Therefore, only considering weather similarity may not be suffi-
cient. Typically, if the day before a weather-similar day also has
a similar load curve with the day before a forecast day, the se-
lected similar day load would better represent the forecast day
load. The criteria of similar day selection (4) in [15] are thus

modified according to

(1)
where subscripts and , respectively, denote a forecast day and
a historical day in the historical set ; subscripts and ,
respectively, denote the day before the forecast day and the
day before the historical day ; represents the weather factor
under consideration, i.e., wind-chill temperature if tomorrow is
a winter day, and humidex if tomorrow is a summer day; rep-
resents the load and is the number of time instances during
one day. , which is the average value of the historical load, is
used to scale the magnitude of load differences. The weight
of the load difference term is determined by the following min-
imization process on all historical days:

(2)

where denotes the selected similar day load with pa-
rameter of a historical day at time instance ; denotes
the actual load of day at time instance ; and is the number
of historical days.
Profiles of a substation actual load, original andmodified sim-

ilar day loads, and previous day (Day-1) load are depicted in
Fig. 5. The mean absolute percent error (MAPE) and correlation
coefficient with respect to the actual load are used to evaluate
these load input variables according to

(3)

and

(4)
where denotes the actual load, represents the load input
variable to be examined, is the number of historical sam-
ples, and are the sample means. The MAPE measures
the closeness between the input load and the target load while
the correlation coefficient measures the association between the
input load and the target load. As summarized in Table I, modi-
fied similar day load has the lowestMAPE and the highest corre-
lation coefficient compared with other two load input variables.
This indicates that the modified similar day load could better
represent the load of a forecast day compared with the other two
load input variables. Meanwhile, to anchor the selected similar
day load and provide an initial status of the next day load, pre-
vious day load is supplemented to the modified similar day load.
Numerical testing of different combinations of weather and load
input variables are provided in Section V to verify the above se-
lection.
2) Wavelet Neural Network: Combination of wavelet trans-

form and NNs has been successfully used in load forecasting
[15], [30], [31]. Unlike Fourier transform, which represents
the signal as a sum of sinusoids localized in frequency only,
wavelet transform uses basis functions which contain both time
and frequency information. It is thus appropriate to use wavelet
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Fig. 5. Load curves of actual load, previous day load, original similar day, and
modified similar day load.

TABLE I
COMPARISONS OF LOAD INPUT VARIABLES WITH TARGET OUTPUT LOAD

Fig. 6. Multiple-level wavelet decomposition scheme
.

transform to deal with signals with nonstationary characteristic
through multi-resolution analysis.
Wavelet transform can be implemented by a filter bank pre-

senting decomposition and reconstruction stages as shown in
Fig. 6.In the decomposition stage, approximation and detail co-
efficients of an input signal are produced by convolving with fil-
ters and then by down-sampling. An ‘approximation’
holds the general trend of the original signal, whereas a ‘detail’
depicts high frequency component of it. In the reconstruction
stage, wavelet coefficients are padded zeros (up-sampling) to re-
cover the data length and are then convolvedwith reconstruction
filters . Filters , , , and have to satisfy per-
fect reconstruction and orthogonality [32]. The input load is thus
broken into low and high frequency components. A multilevel
decomposition process can be achieved by successively decom-
posing the approximations. In this paper, a two-level wavelet
composition is adopted. Thus, load and weather data are decom-
posed into LL, LH and H frequency components as the scheme
presented. When these decomposed components are fed into in-
dividual NNs trained by node-decoupled EKF, the same fore-
casting quality is assumed for each component. The three fore-
casts are therefore summedwith equal weights to obtain the final
forecast.
Daubechies (Db) wavelets are selected in our method be-

cause they are a family of orthogonal wavelets, and will not
cause information loss in the frequency domain. The Db mem-
bers tested are Db2-Db20 (even index only), in which the index

Fig. 7. Load profiles of (a) a substation and (b) six feeders during a week from
March 5, 2012 (Monday) to March 11, 2012 (Sunday).

number refers to the filter length. To choose a good decompo-
sition level and filter window length, extensive experiments are
conducted [29]. Two-level decomposition with Db4 is found to
be the best among levels from zero to three and DB index mem-
bers from 2–20. Determination of the above parameters as well
as the parameters in NNs such as the number of hidden neurons
is through training, validation, and test processes in a three-way
data split [33]:
1) Divide the data into training, validation and test sets;
2) Select one parameter (e.g., number of hidden neurons) and

set values of other parameters to nominal levels.
1) Initialize the selected parameter;
2) Train WNN using the training set;
3) Evaluate the model on the validation set by calculating

the validation set error;
4) Tune the parameter and repeat steps 2.2 and 2.3;
5) Select the parameter value which results in the min-

imum validation set error;
3) Repeat step 2 to determine other parameters;
4) Select the best model and train it using data from the

training and validation sets;
5) Assess the final model using the test set.

B. Node Classification
Load pattern of a child node generally follows the pattern of

its parent node. As weekly load profiles of a substation and its
six feeders shown in Fig. 7, most feeders have similar load pat-
terns with that of the substation. Nevertheless, there also exist
deviations on particular days (e.g., Day 3 and Day 4) when load
patterns of some feeders are different from that of the substation.
The load pattern similarities motivate forecasting child nodes by
the proportion from the parent load forecast. However, for those
child nodes whose loads significantly vary from the parent load,
proportion is not suitable and individual models are needed. To
identify which category that a child node belongs to and se-
lect a proper forecasting method, a dynamic node classification
method is developed.
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Similarity between two time series is commonly identified by
distance matrix [34]–[36]. In [34], similarity matching of two
observed series was based on the distance of wavelet coeffi-
cients after decomposing the data series. In [35] and [36], simple
Euclidean distance was used to investigate the pattern similar-
ities. In our problem, considering the different magnitudes of
child nodes, Euclidean distance between the normalized child
load and parent load is calculated as a pattern similarity index.
Furthermore, since loads having the same day of week index
are likely to have similar patterns, the distance between a child
node and its parent node on day is estimated as the averaged
distance of past weeks having the same day index with the
forecast day as expressed in

(5)

and

(6)

where is the number of child nodes, and
are the normalized loads of child node and the

parent node at time instance on day , respectively.
Distances between all child nodes and the parent node are cal-

culated using (5) and (6). Node classification is then determined
for the forecast day according to:

, (7)

where is a distance threshold. On each forecast day, a child
node is defined as “regular” if is smaller than the threshold;
otherwise, it is defined as “irregular”. The threshold is ini-
tialized as the average of historical distances, and then tuned
through training and validation data sets.
This distance-based classification method can be treated as

a simplified form of -means clustering in which the normal-
ized parent load is the cluster center. Compared with the stan-
dard -mean clustering with two clusters, our classification cal-
culates the distance between child and parent nodes and indi-
cates how much the child loads follow the parent load. Numer-
ical results for the estimated distances, actual distances, and the
threshold distance are shown in Section V to verify and evaluate
the classification.

C. Load Forecasting Method for Regular Nodes
To forecast the load of a regular node on day , LDFs are

estimated by the averaged LDFs of the past weeks having the
same day of week index with the forecast day as in

(8)

The LDFs are updated on each forecast day and this dynamic
feature helps capture changes of the proportions. Load forecasts
of a regular child node are then obtained simply as

(9)

where and are load forecasts of child node
and its parent node, respectively.

D. Load Forecasting Method for Irregular Nodes
For irregular nodes, since their load patterns could be signifi-

cantly different from that of the parent node, LDF is not suitable.
To better capture the complicated load features and estimate the
nonlinear relationships between affecting factors and the target
load, WNN-based forecasting model is used.
In spatial load forecasting, correlations with neighboring

regions and information available outside the target area are
used to improve the forecasting accuracy [5]. Using infor-
mation available from a neighboring area to predict a target
area has achieved improvements in load forecasting [37], wind
power forecasting [38] and solar power forecasting [39]. As
discussed above, in addition to the inputs considered for a root
node, load from correlated sibling nodes would help WNNs
capture the load features of irregular nodes. Since the number
of correlated nodes could be large, and if all are considered,
algorithm complexity will increase and forecasting accuracy
may even degrade. Our idea is to select one key sibling node
and use the previous day load of this selected node as additional
inputs to WNNs.

IV. DETECTING SWITCHING OPERATIONS

This section deals with detecting switching operations and
adjusting forecasting methods after an identified switching op-
eration. Section IV-A presents an SPC-based method to de-
tect switching operations. In Section IV-B, the methods for ad-
justing LDFs and WNNs are described.

A. An SPC-Based Method for Detecting Switching Operations
Statistical Process Control (SPC) is used to monitor the ac-

tual load and detect abnormal changes according to load fore-
cast means and standard deviations. If there is no switching
operation, the actual load generally falls into a normal range.
When a switching operation happens, actual load may exceed
the normal range, causing significant changes to be caught by
SPC rules. This switching operation detection method adopts
the SPC-based detection idea and the SPC control rule from
[28], in which a synergistic integration of SPC and Kalman filter
was presented to detect the faults of chillers and cooling towers.
Load forecast errors are commonly assumed to be Gaussian

distributed [40]. Under this assumption, actual load falls into
the one-sigma range with approximate 68% probability and
two-sigma range with 95% probability without switching op-
erations. In [28], two-sigma range is used as the adaptive SPC
control limit to guarantee 95% Gaussian coverage. Similarly,
a switching operation in the distribution system is detected if
back-to-back points fall outside of the two-sigma range and

the points are either all above upper limits or all below lower
limits. This is because a switching operation typically keeps the
trend and lasts for a certain period. The number of points, , is
set to be 3 so that a potential switching operation is detected at
the 99.99% confidence level according to (10) in [28].
For nodes forecast by WNN, standard deviations of the fore-

casts can be directly obtained from the diagonal elements of the
innovation covariance matrix in decoupled EKF [18]. For reg-
ular nodes forecast by LDFs, standard deviations are derived ap-
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Fig. 8. Dynamic two-sigma range as SPC control limits for detecting switching
operations.

proximately from those of their parent nodes. Assume that the
load forecasting error of a parent node is Gaussian with standard
derivation on day at time instance . The load fore-
casting error of its regular child node is then approximately
obtained as a Gaussian with standard derivation proportioned
by LDF from

(10)

Distributions of forecasting errors from WNN and LDF are an-
alyzed to verify the normal assumption by Quantile-Quantile
plots of the errors and sigma coverage rates of the actual load
as demonstrated in the numerical testing.

B. Adjusting LDFs and WNNs

After the actual load of a forecast day is available, the load is
examined using the SPC control rule as discussed above. If no
switching operation is detected and no earlier switching opera-
tion is identified, regular forecasting processes will be followed
for the next day. If a switching operation is detected and the load
is switched back to the normal range, i.e., the abnormality does
not last long, regular forecasting processes will be followed.
If a switching operation is detected and it lasts until the end

of the current day as shown in Fig. 8, adjusting LDFs or WNNs
is needed. For a regular node, after such a switching operation,
we keep on using LDF but the calculation in (8) is based on the
latest new data only without the requirement of using data with
the same day index. When the length of the new data collected
is more than weeks, original LDF is used. However, after a
switching operation is identified, a regular node may not main-
tain the regular pattern. Thus, WNN is started at the background
with the new data until it is shown that the new pattern is reg-
ular, or WNN is ready to forecast.
For an irregular node, after switching operations, we keep on

using WNN with weights updated by the new data. Since the
irregular node may become regular, LDFs are started with the
new data at the background until it is shown that the new pattern
is irregular, or when LDFs begin to produce good predictions.

V. NUMERICAL TESTING

The above method has been implemented in MATLAB on
an Intel Core 2.20 GHz personal computer. The forecasting
performance is evaluated by using the standard mean absolute

percentage error (MAPE):

(11)

If the denominator in (11) is close to zero, mean absolute
error (MAE) is used:

(12)

Two practical datasets are tested in Examples 1 and 2, respec-
tively. For both examples, one-year load data in 30-minute in-
terval and hourly weather data are collected. The test set is
the last month data, the validation set is one month prior to
the test month, and the rest data are used for WNN training.
When the validation error (MAPE/MAE) increases for five iter-
ations, the training is stopped, and the weights resulting in the
minimum validation error are stored. Parameters need to be set
in WNNs, node classification, and LDF calculation are deter-
mined based on training and validation processes as described
in Section III-A-2.
Since only actual weather data are available, in the training

period, actual weather data are used as WNN inputs whereas
in the validation and testing periods, actual weather data plus
a Gaussian noise are used as weather predictions. The
forecasting performance of using this predicted weather is ex-
pected to be close to that in the real applications.
Example 1: This example demonstrates load forecasting for

a substation and six feeders located in a large city in North Car-
olina, United States. Load and weather data collected are from
August 01, 2011 to July 24, 2012. The training period is from
August 2011 to May 2012, the validation period is June 2012,
and the test period is July 01–24, 2012.
Seven cases are presented below. Case 1 demonstrates the

learning and generalization capability of WNN using one-year
data for substation load forecasting. Case 2 shows the values of
input selection of WNN for substation load forecasting. Case 3
examines the dynamic feeder classification. Case 4 shows load
forecasting for regular feeders. Case 5 comparesWNN and LDF
for irregular feeders. Case 6 evaluates the normal assumption
for load forecasting errors and demonstrates the significance of
switching operation detection. In Case 7, the performance of our
method is compared with two naïve benchmarks, two multiple
linear regression models, and one NN model.
Case 1: The training and validation processes of each fre-

quency component for substation load are described in this case.
The inputs selected for WNN include similar day load, previous
day load, forecast day weather predictions (wind-chill temper-
ature and humidex), and day of week index. The training and
validation errors are evaluated byMAPE for LL frequency com-
ponent andMAE for LH and H components. As shown in Fig. 9,
for LL frequency component, both training and validation pro-
cesses converge quickly after several iterations. For LH and H
frequency components, because the components are volatile,
convergences are not as smooth as for the low frequency com-
ponent. The validation set stops the training at a specific number
of iterations if further five iterations on training data degrade the
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Fig. 9. Training and validation errors with the number of training iterations
for each frequency component. (a) LL frequency component; (b) LH frequency
component; (c) H frequency component.

network generalization ability on the validation set. The num-
bers of iterations to meet the minimum validation errors are 22,
10, and 7 for LL, LH and H frequency NNs, respectively.
Case 2: This case demonstrates the benefits of input weather

and load variable selection for WNN to forecast the substation
load. In our method, the inputs selected for WNN to forecast
the load of a root node include similar day load, previous day
load, forecast day weather predictions (wind-chill temperature
and humidex), and day of week index.
1) Weather input variables: WNNs using different combina-

tions of weather input variables are compared. Other in-
puts include similar day load, previous day load, and day of
week index. MAPEs presented in Table II show the values
of selected wind-chill temperature and humidex.

2) Load input variables: WNNs using different combina-
tions of load input variables are compared. Other inputs
include weather predictions (wind-chill temperature and
humidex), and day of week index. The MAPEs presented
in Table III show the values of selected load inputs.

3) Actual weather verse predicted weather: WNN using the
actual weather and predicted weather on forecast days are
compared. Results in Table IV show that with adding a
noise on the actual weather, the forecasting MAPE in-
creases compared with using actual weather. This is rea-
sonable because using actual weather without uncertainties
could result in lower MAPE. However, the performance of
using weather data with uncertainty is expected to be close
to the performance in the real applications.

Case 3: The node classification process is presented in this
case. In Table V, the first row shows the actual averaged dis-
tances calculated during the validation period June 2012 while
the rest are the estimated distances on the last two weeks of the

TABLE II
NUMBER OF HIDDEN NEURONS AND MAPE (%) FOR SUBSTATION

JULY, 2012 LOAD (CASE 2-1 IN EXAMPLE 1)

M1: With wind-chill temperature; M2: With humidex; M3: With wind speed;
M4: With both wind-chill temperature and humidex;
M5: With wind-chill temperature, humidex and wind speed.

TABLE III
MAPE (%) FOR SUBSTATION JULY, 2012 LOAD (CASE 2-2 IN EXAMPLE 1)

M1: With previous day load; M2: With original similar day load;
M3: With modified similar day load;
M4: With both previous day load and original similar day load;
M5: With both previous day load and modified similar day load.

TABLE IV
MAPE (%) FOR SUBSTATION JULY, 2012 LOAD (CASE 2-3 IN EXAMPLE 1)

test period. The distance threshold is set as 0.50, which is deter-
mined based on the historical actual distances and training-vali-
dation process. It can be seen that Feeders 1, 2, 3 and 5 are iden-
tified as “regular” nodes for all test days and they are forecast
by LDF. Feeder 4 is identified as an “irregular” node for most of
the test days. Even though the estimated distances on some days
(e.g., July 16 and 17 with ) show regularity of Feeder
4, since this regularity does not keep long, WNN is still used
until a long-term regularity is identified. As for Feeder 6, it has
only one day identified as an irregular node during all test days.
In view of the fact that the averaged distance during validation
period shows the regularity of this node, and the irregularity did
not keep long, Feeder 6 is therefore treated as a regular node
and forecast by LDF for all test days. Thus five of six feeders
are forecast by LDFs, which indicates a low computational ef-
fort. Actual distances during the last two weeks of the test pe-
riod are also calculated for verification as shown in Table VI.
The actual distances are generally consistent with the estimated
and this demonstrates the overall irregularity of Feeder 4 and
the regularity of other feeders.
Case 4: Load Forecasting for regular nodes Feeders 1, 2, 3,

5 and 6 by using LDF and individual WNN are compared. The
results summarized in Table VII show that the LDF captures
load features and provides competitive load forecasts for regular
nodes compared with the results from WNNs.
Case 5: Load forecasting performance for an irregular node is

shown in this case. Irregular node Feeder 4 is forecast by WNN
with considering correlations with the selected sibling node
Feeder 3. Three other approaches are compared: using WNN
without considering correlations with other nodes, using WNN
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TABLE V
ESTIMATED DISTANCES OF THE NORMALIZED LOADS BETWEEN

SIX FEEDERS AND SUBSTATION (CASE 3 IN EXAMPLE 1)

TABLE VI
ACTUAL DISTANCES OF THE NORMALIZED LOADS BETWEEN

SIX FEEDERS AND SUBSTATION (CASE 3 IN EXAMPLE 1)

TABLE VII
MAPE (%) FOR REGULAR FEEDERS JULY, 2012 LOAD (CASE 4 IN EXAMPLE 1)

with the substation load as additional inputs, and using LDF
method. Forecasting MAPEs are summarized in Table VIII.
For Feeder 4, our method (M1) produces the lowest MAPE
7.25 as compared with other two WNNs and LDF.
Case 6: This case verifies the normal assumption of the fore-

casting errors and demonstrates the switching operation detec-
tion. As shown in Fig. 10, Quantile-Quantile plot of the substa-
tion load forecasting errors clearly shows heavier tails than the

TABLE VIII
MAPE (%) FOR FEEDER 4 JULY, 2012 LOAD (CASE 5 IN EXAMPLE 1)

M1: Using WNN with a correlated sibling load as additional inputs;
M2: Using WNN without any load inputs outside this node;
M3: Using WNN with the substation load as additional inputs;
M4: Using LDF.

Fig. 10. Quantile-Quantile plot of substation load forecasting errors versus the
standard normal.

Fig. 11. Quantile-Quantile plots of forecasting errors versus the standard
normal for a regular load Feeder 1 and an irregular load Feeder 4.

Gaussian. TheQuantile-Quantile plots of load forecast errors for
a regular node Feeder 1 and an irregular load Feeder 4 are also
depicted in Fig. 11. Both have heavier tails than Gaussian. How-
ever, if the top and bottom tails are removed, the remaining er-
rors follow a normal distribution. The standard deviation (STD)
of the prediction, one-sigma and two-sigma actual load cov-
erage rates calculated for substation and feeders are shown in
Table IX. The one-sigma coverage rates range from 69.18% to
81.07%, which are slightly larger than 68% under the Gaussian
assumption. The two-sigma coverage rates of all feeders are
lower than the value 95% under Gaussian distribution. This is
mainly because of the abnormal consumption occurred on July 2
for Feeder 1 and on July 8 for almost all feeders. These changes
are caught by the two-sigma rule as shown in Fig. 12 for Feeder
1. The two-sigma coverage rates of the actual load are thus
lowered. Because the abnormal load was switched back to the
normal ranges, no adjustments are made in this case.
Case 7: This case compares our method with two naïve

benchmarks, two multiple linear regression (MLR) models,
and one back propagation NN (BPNN). The naïve benchmarks
include using previous day load (Day-1) and the load of a week
ago (Day-7) as forecasts for the next day load. The first MLR
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TABLE IX
MAPES (%), MAES (MW), STDS (MW), ONE-SIGMA COVERAGE

RATES (%), AND TWO-SIGMA COVERAGE RATES (%) FOR SUBSTATION
AND FEEDER LOADS (CASE 6 IN EXAMPLE 1)

Fig. 12. The switching operations detected for Feeder 1 on July 2 and July 8.

model has the corresponding independent variables as input
factor of WNN as expressed in (13):

(13)

• denotes the load at time instance . denotes
the modified similar-day load at time instance .
denotes the load of previous day at the same time instance
for 30-minute data.

• and denote predicted wind chill temperature and
humidex at time instance , respectively.

• is the day index: 1 for Monday, 2 for Tuesday-
Wednesday-Thursday, 3 for Friday, 4 for Saturday, and 5
for Sunday.

• is the time instance index, ranging from 1 to 48
for 30-minute data.

• is the coefficient of each independent
variable.

• is i.i.d Gaussian random variable with zero mean and
finite variance.

The second MLR model has the same formulation but does
not contain the modified similar day load variable. A
traditional BPNN (implemented by MATLAB Neural Network
Toolbox) without wavelet decomposition is also considered for
comparison. Input factors for BPNN are identical with those
used in WNN.
Forecasting MAPEs for the substation and six feeders are

summarized in Table X. As can be seen, benchmarks using pre-
vious day load and the load of a week ago encounter high predic-
tion errors. The MLR without considering the similar day load
also results in high MAPEs. However, when modified similar
day load is taken into account, the prediction power of MLR
is enhanced significantly. The MAPEs obtained from a single

TABLE X
MAPE (%) FOR SUBSTATION AND FEEDER JULY, 2012

LOADS (CASE 7 IN EXAMPLE 1)

A: Using our method ;
D-1: Using previous day load;
D-7: Using the load of a week ago;
MLR (1): Using MLR with selected similar day load;
MLR (2): Using MLR without selected similar day load;
BPNN: Using back propagation NN.

BPNN further outperforms MLRs because the nonlinear repre-
sentation of input-output relationship in NN can better capture
the load characteristics than the linear relationship used inMLR.
Overall, our method achieves the lowest MAPEs for both sub-
station and feeders because it captures the complicated load fea-
tures through wavelet decomposition and dynamic pattern sim-
ilarity analysis. Moreover, when compared with the forecasting
MAPEs ranging from 2% to 20% for substation and feeder loads
reported in the literature [24], [25], our results are competitive.
The NNs are trained offline by the historical data. Averagely,

the training can be conducted within 20 minutes for both WNN
and BPNN. Training times for WNN and BPNN are similar be-
cause even though BP iteration is faster than the decoupled EKF,
BP converges much slower and requires a larger number of it-
erations. Once the WNN model is well trained and validated,
it can be used to predict the next day load given the new input
data. The weights of WNNs are then updated online with the
realized latest 24 hours' loads.
Example 2: This example demonstrates load forecasting for

four feeders and selected customers in a city in Washington,
United States. Load and weather data from December 01, 2011
to November 30, 2012 are collected. The training period is from
December 2011 to September 2012, the validation period is Oc-
tober 2012, and the test period is November 2012. In addition,
data of more than 1000 smart meters within this substation are
available for four days from April 1, 2012 (a Sunday) to April
4, 2012.
Two cases are presented below. Case 1 predicts substation

and feeder loads. Case 2 extends the forecasting to the cus-
tomer level. In both cases, inputs for WNNs include similar day
load, previous day load, weather predictions on the forecast day
(wind-chill temperature and humidex), and day of week index.
Case 1: This case predicts substation and feeder loads and

demonstrates the values of switching operation detection.
Among four feeders, Feeders 1 and 2 are forecast by LDF while
Feeders 3 and 4 are forecast by WNN. As shown in Fig. 13, a
significant switching operation was detected on November 20,
2012 for Feeder 1. The load magnitude after switching opera-
tion decreased and Feeder 1 maintained the regular pattern for
a certain period. Therefore, Feeder 1 is forecast by the original
LDF for the first twenty test days. After November 20, Feeder
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Fig. 13. Switching operations detected for Feeder 1 on November 20, 2012.

TABLE XI
MAPE (%) FOR SUBSTATION AND FEEDER NOVEMBER,

2012 LOADS (CASE 1 IN EXAMPLE 2)

A: Using our method ;
D-1: Using previous day load;
D-7: Using the load of a week ago;
MLR (1): Using MLR with selected similar day load;
MLR (2): Using MLR without selected similar day load;
BPNN: Using back propagation NN.

TABLE XII
MAPE (%) FOR SMART METER NOVEMBER, 2012 LOAD (CASE 2 IN EXAMPLE 2)

1 is forecast by the modified LDF, which is calculated based on
the new data after the switching operation. Forecasting results
of our method, two naïve benchmarks, two MLRs, and a simple
BPNN are summarized in Table XI. It can be seen that our
method provides the lowest MAPEs for the substation and all
feeders.
Case 2: Smart meter-based customer load is predicted in this

case. Since the smart meter data are limited and no transformer
data are available, predictions are generated by using LDFs.
Hourly load of April 4, 2012 is forecast based on feeder load
forecasts and LDFs calculated by smart meter readings of the
previous two days (Sunday April 1 is ignored). Forecasting re-
sults of four selected customers are shown in Table XII. Because
of the complicated customer behaviors and the limited data, the
law of large number is not as effective as for the aggregated
load. Thus, high MAPEs are obtained as expected.

VI. CONCLUSION
This paper presents a generic approach for short-term load

forecasting at the distribution level within the hierarchical struc-
ture. With a root node forecast by WNNs and load pattern simi-
larity-based child node classification, forecasts of all child nodes

are obtained. Simple and fast LDF method is applied to fore-
cast the load of regular child nodes, whereas WNNs with corre-
lated sibling node are used for irregular nodes. The SPC-based
switching operation detection is also considered to improve the
forecasting accuracy. Testing results demonstrate the high pre-
diction accuracy of this method. The new approach represents
an effective way to forecast distribution-level load and would
be helpful in the future smart grid.
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