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Abstract-The interaction between a smart target and a smart 
MIMO radar is investigated from a game theory perspective. Since 
the target and the radar form an adversarial system, their interac­
tion is modeled as a two-person zero-sum game. The mutual infor­
mation criterion is used in formulating the utility functions. The 
unilateral, hierarchical, and symmetric games are studied, and the 
equilibria solutions are derived. 

Index Terms-Game theory, hierarchical game, jamming, 
MIMO radar, Nash equilibrium, Stackelberg equilibrium, wave­
form. 

1. INTRODUCTION 

T HE success of the multiple-input multiple-output 
(MIMO) structure in communications has inspired 

investigation of MIMO radar. MIMO radars do not have a 
standard definition, and current literature divides them into 
statistical [1] and co-located [2], based on the antenna con­
figuration. Generally, a statistical MIMO radar leverages the 
diversity of propagation path with sufficiently dissimilar trans­
mitter-receiver geometry to improve detection, estimation, and 
information extraction [1], [3]-[8]; while a co-located one 
implies spatially coherent processing such as beamforming 
and direction-of-arrival estimation [2], [9]-[11]. The eventual 
acceptance of MIMO radar still remains unclear [12]. 

Waveform diversity is a key feature of a MIMO radar system 
[2]-[16]. It emphasizes illumination cooperation, and may 
provide an opportunity to upgrade radar performance. The 
specification of a waveform set largely depends on the system 
task. For propagation path separation, waveforms are required 
to be (near) orthogonal in order to avoid cross interference 
[3], [13]-[15]. In beampattem design, waveforms are corre­
lated, so maximal transmission power can be focused in a 
certain direction [9]-[11]. In information extraction, the mutual 
information (MI) between the target response and collected 
echoes is maximized [4]-[8]. In target detection, optimized 
waveforms are designed to assure least likely missed detection 
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for a given false alarm rate [8] or to maximize the signal-to-in­
terference-plus-noise ratio [16]. And in target scatterer matrix 
estimation, waveforms are optimized for minimum mean square 
error [4]-[6]. 

Among those waveform design criteria, MI has acquired ex­
tensive attention. In the pioneering work [17], Woodward first 
suggested the application of information theory to radar receiver 
design. Later, Bell showed that maximizing the MI between 
target impulse response and measurement may enable the radar 
system a better capacity in characterizing the target in a contam­
inated environment [18]. Some interesting extensions including 
MI based waveform design in the presence of multiple targets 
[19], MI based MIMO radar space time code optimization [8] 
and waveform design [4]-[7] emerge thereafter. In this paper, 
we will concentrate on the application of the MI criterion to sta­
tistical MIMO radar. 

Current literature on MIMO radar waveform design prefers 
to investigate the interaction between a smart radar and a dumb 
target, where the former has some knowledge of the latter such 
as radar cross section (RCS) distribution, while the latter is in­
capable of interfering with the former. Actually, with the de­
velopment of electronic warfare, many noncooperative targets 
such as fighters are equipped with countermeasure systems to 
prevent a radar from operating as well as it might [20]. In this 
paper, the interaction involves a smart target, which carries jam­
ming equipment that could intelligently confuse the radar. If 
the target always tries to prevent a radar from fulfilling its task, 
the interaction between them can be modeled as a two-person 
zero-sum (TPZS) game [21]. 

As in [4]-[8], the MI criterion is utilized to formulate the 
utility functions. The radar controls the waveform matrix to 
maximize the MI, while the latter has some access to its jam­
ming matrix to minimize it. The contributions of this paper are 
as follows. 

• We suggest the use of a MI based TPZS game to model 
the interaction between a target and MIMO radar, and cat­
egorize the game into one of three-unilateral, hierarchial, 
and symmetric-based on the information set available for 
each player. 

• In the unilateral case, where one player can intercept the 
other's strategy while the latter does not notice that this 
is happening, the TPZS games are simplified as single 
person optimizations. For this case, the optimal (water­
filling) strategies are derived. 

• In the hierarchial case, where one player can intercept the 
other's strategy while the latter does notice that, the TPZS 
game is recast as a conservative minmax or maxmin two­
stage optimization. The Stackelberg equilibria-optimiza­
tion solutions-are derived. 
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• We give the existence conditions and the expression of 
the Nash equilibrium for the symmetric game, where each 
player has no idea of the other's strategy. Some possible 
strategy combinations are discussed. 

The application of game theory in radar is not new, and sev­
eral interesting works can be found for both the monostatic 
and multi static configurations. For example, a detection game 
between a target and a radar is analyzed under the Neyman­
Pearson criterion in [22]; military air operations including mis­
sile guidance and air combatare explored in [23] and [24]; the 
tracking of an intelligent invader with a mono static radar is in­
vestigated with the differential game theory in [25], and so forth. 
To the best of our knowledge, a game theory based analysis of 
the interaction between a target and MIMO radar, however, has 
not received attention yet. 

Game theory is also used in communication to model 
multi-user interference [26]-[29]. For example, various 
two-user noncooperative games are summarized in [26], where 
each user considers the other as interference and greedily 
maximizes its individual capacity. In [27], the hostile in­
teraction between a relay and jammer is investigated in the 
presence of receiver noise and a weak source-destination link. 
Reference [28] focuses on the interaction between a MlMO 
communication system and jammer, while some network layer 
considerations including competitive routing and contested 
spectrum are collected in [29]. Different from [26] and [27], 
where each user has only a single antenna, a player in this paper 
controls several. The transmitted information for each antenna 
is a modeled as a scalar in [28], while each antenna can send a 
waveform vector in our MlMO radar model. More important, as 
regards utility function formulation, a communication system 
concentrates on the MI between the received and transmitted 
signals [26]-[28], while a MlMO radar emphasizes the MI 
between the received signal and target response matrix (or 
channel matrix) [4]-[8]. More differences between them can 
be found in [6]. 

The remaining parts are organized as follows. Section II in­
troduces the MIMO radar signal model. Section ill specifies 
the MI game criterion. Section IV investigates unilateral games, 
while hierarchical games are in Section V. Section VI focuses 
on games with symmetric information. Section VII shows nu­
merical results, and then conclusions are drawn. 

Notation: Boldface uppercase and lowercase letters denote 
matrices and column vectors respectively; Ik indicates a k X 

k identity matrix; OT and (-)H denote transpose and Hermi­
tian transpose, respectively; diag(a) denotes the diagonal ma­
trix formed by vector a, while det(A), Tr(A), and rank(A) 
obtain the determinant, trace, and rank of A respectively. IE {.} 
denotes the mathematical expectation. Finally, a '" CN(O, A) 
means that a is a zero-mean complex Gaussian vector with co­
variance matrix A. 

II. MlMO RADAR SIGNAL MODEL 

A. lamming-Free Modeling Recap 

A statistical MlMO radar employs distributed antennas to 
combat ReS fluctuation. Let the radar system be comprised of 
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nt transmitters and nr receivers, all properly synchronized. Sup­
pose that the transmitted waveform of the j th transmitter is S j, 

and then the collection of jamming-free echoes for the ith re­
ceiver is modeled as [1], [3] 

(1) 

where 

hi = [hi,l' hi,2,···, hi,ntF the path gain vector for re­
ceiver i; 

a K x. nt transmitted wave­
form matrix with K ~ nt, 
and K denotes the waveform 
length; 

the K X 1 receiver noise 
vector. 

Define H = [hl' h2' ... ,hnJ as the nt X n-r path gain matrix; 
therefore, the received signal matrix Y = [Yl' Y2, ... ,YnJ can 
be compactly written as 

(2) 

where W = [Wi, W2, .•. ,wnrl is the K X nr noise matrix. 
The signal model (2) is very general, and it can represent ei­

ther a statistical or a co-located MlMO radar by properly formu­
lating H. In general, each element of H, say hi,j, stands for gain 
along a certain path: jth-receiver-target-ith-transmitter, and 
it integrates antenna steering vectors and bistatic radar reflection 
coefficient [1], [3]. The transmitters and receivers for a co-lo­
cated MIMO radar are sufficiently close that all the propagation 
paths share the same random reflection coefficient e. As a re­
sult, H becomes a rank-one matrix, and it can be decomposed as 
H = ea( e)b( e)T, where a( e) and b( e) respectively denote the 
transmitting and receiving steering vectors [1]. A key problem 
for a co-located MIMO radar is how to improve beampattern de­
sign via a joint optimization of a( e) and S; this is named as spa­
tially coherent processing with waveform diversity [2], [9]-[11]. 
It is interesting to see that 1) a co-located MlMO radar concerns 
itself more with steering vectors rather than e in coherent pro­
cessing and 2) the dimension of its signal subspace is one as 
rank(IE{SHHHSH}) = 1. As for a statistical MlMO radar, 
antennas are sufficiently separated, and hi,j' s are assumed as 
independent random variables. Since bearnforming is less inter­
esting for a distributed configuration, there is no need to sep­
arately consider steering vectors and reflection coefficients. In 
addition, as the steering vectors only introduce phase shifts, the 
distribution of H is identical to that of target scattering ma­
trix-a collection of reflection coefficients. So in some statis­
tical MlMO radar publications, H is also equivalently termed 
as target scattering matrix [7]. With sufficient antenna span, H 
becomes a full rank random matrix [1], and the dimension of 
signal subspace turns to be nt instead of 1. With knowledge of 
the statistics of H, a statistical MIMO radar could adaptively 
allocate its waveform power within the noise space so as to en­
hance system performance [4]-[8]. Mathematically, such a non­
coherent improvement with spatial diversity is attributed to the 
expansion of signal subspace. 
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A statistical MIMO radar system considers the radar-target 
interaction under a probability framework, and the distributions 
of H and W are the key issues. Three frequently utilized as­
sumptions are as follows. 

AI) The receivers are homogeneous, and wi's are identically 
and independently distributed (i.i.d.) Gaussian vectors 
with distribution Wi ,..., eN(O, Rw). 

A2) The transmitters and receivers are sufficiently separated, 
and the propagation gains hi ,/ s for different bistatic 
geometries are independent. Furthermore, the target of 
interest is comprised of a large number of small i.i.d. 
random scatterers. With the central limit theorem, the 
hi'S could be considered as i.i.d. Gaussian vectors with 
distribution hi. ,..., eN(O, (J~In.) [3]. 

A3) Hand W are mutually independent, and neither of them 
relies on wavefonn matrix S. 

Note that (2) plus these three assumptions compose ac1assical 
model for the statistical MIMO radar, many interesting results 
on target detection, estimation, information extraction, and 
wavefonn optimization rely on it [3]-[8]. 

B. Jamming Modeling 

In general, the target and radar system are noncooperative. 
Survival requires countenneasures, and hence there has been 
considerable research on jamming [20], [22]. Electronic jam­
ming interferes with the operation of a radar by saturating its 
receiver with electromagnetic noise or false infonnation, and it 
has many realizations such as spot, sweep, barrage and decep­
tive [20]. In the following, we consider a typical approach-bar­
rage jamming, where the target interferes with the MIMO radar 
system via wavefonn independent noise. Mathematically, the 
MIMO radar signal model could be modified as 

(3) 

where J denotes the K x n.,. jamming matrix. Here, one more 
assumption is appended: 

A4) J is ind€!pendent of Hand W, and its columns are i.i.d. 
random vectors with distribution eN (0, Rb). We use the 
subscript 'b' for barrage. 

The relationship between the two game players, radar and target, 
is formulated. The former controls the wavefonn matrix S, and 
the latter dominates J. This is a TPZS game [21], where one 
player's gain is the other's loss. 

III. MUTUAL INFORMATION 

A. MI Formulation 
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in a contaminated environment, where h(YIS) represents the 
conditional differential entropy, and it is written as [30] 

h(YIS) = - J feY, S) log f(YIS)dY dS 

= - J f(YIS) log f(YIS)dY 

= - E {log f(YIS)} (5) 

because S is nonrandom. As the conditional probability density 
function (pdf) of Y for a given S is 

f(YIS) = 1 
7rnrK detnr ((J~SSH + Rb + Rw) 

x exp { -Tr [((J~SSH + Rb + Rw) -1 yyH]} , (6) 

the conditional differential entropy h(YIS) is recast as 

h(YIS) =E {n .. K log 7r } 

+ E {n .. logdet ((J~SSH +Rb+Rw)} 

+ E { Tr [ ((J~SSH +Rb+Rw) -1 yyH]}. (7) 

Since the first two items are independent of Y, and since 

E {Tr [((J~SSH +Rb +Rw) -1yyH]} 

= Tr [((J~SSH +Rb +Rw) -1 E{yyH}] 

= n .. Tr[IKl (8) 

we have 

h(YIS) = c + n .. log [det ((J~SSH + Rb + Rw)] (9) 

where c ~ n .. K log 7r + n .. K is a constant. Moreover, since 

1 
f(J + W) = 7rnrK detnr(Rb + Rw) 

x exp {-Tr [(Rb + Rw)-1(J + W)(J + W)H]}, (10) 

with a similar derivation, we have 

h(J + W) = c + nor log [det(Rb + Rw)l. (11) 

Substituting (9) and (11) into (4), we obtain 

As in [4]-[8], the MI criterion is adopted in this paper. The 
MIMO radar wants to extract MI between the received signal Y 
and the path gain matrix H Apparently, h is a function of the radar-target strategy pair 

(S, Rb). The optimal strategy of one player depends on its in­
(4) ference of the other's. I(Y;HIS) = h(YIS) - h(J + W) 
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B. Eigenspace Selection 

The strategy domain of (12) is composed of two Hermitian 
matrices: Rb and SSH. A direct interaction analysis in ma­
trix domain is rather complex, particularly when one player 
has no knowledge of the other. As a Hermitian matrix is deter­
mined by its eigenvectors and eigenvalues, the TPZS game actu­
ally implies two parts: eigenspace selection (where to play) and 
eigenvalue optimization (how to allocate power). This subsec­
tion concentrates on the first. Here we treat the question whether 
each player has an eigenspace preference. 

Proposition 1: Let the ejfendecomposition of Rw, R b, and 
SSH be Rw = U wAwU w' Rb = U bAbU{!, and SSH = 
usrsulj respectively, and then 

compose an equilibrium in eigenspace selection, where PI and 
P 2 are two arbitrary permutation matrices. Furthermore, this 
equilibrium is, and the only one is, invariant to the specifications 
of Ab and r 8 • 

Proof" Proof is in Appendix B. • 
In Proposition 1, the eigenspace equilibrium means that if the 

target chooses U wP2 to span its jamming covariance matrix, 
the best response eigenspace for radar is U wP 1, and vice versa. 
However, no one could guarantee that two players converge to 
a given equilibrium unless it is unique or it has other unique 
attractive properties among all the equilibria [21]. Even though 
(Us = U wPl, Ub = U wP2) may be not unique, it is the only 
one-that is invariant to power allocation specifications. In other 
words, no matter how the two players allocate their power, the 
eigenspace equilibrium will still hold. As a result, if one player 
could not precisely infer the other's power allocation, staying 
at the eigenspace defined in Proposition 1 would be a secure 
choice. 

Based on the analysis in the previous paragraph, another as­
sumption is inserted: 

AS) The radar and target choose the eigenspace equilibrium 
defined in Proposition 1, and the eigenvectors spanning 
the jamming and waveform space are the same as those 
for the noise space. 

Since the dimension of signal subspace is nt, the eigenvalue 
matrix r s can be written as 

(14) 

where As = diag( [O"f, 0"2' ... , O"~.l). Let the diagonal elements 
of Aw = diag([O"l", O"r, ... ,O"[(]) be in decreasing order 

(15) 

while those of Ab = diag([O"r, O"~, ... ,O"k]) do not have any or­
dering requirement. Without loss of generality, define the wave­

form matrix as S ~ Uw P 1 [$s, On,x(K_n,)]T, and then the 
MI at the equilibrium is specified as 

~- - -:--::..::: -::--:-:-:-:-:--::-:-::--: -: ----- --
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where the extended diagonal matrix r s will reduce the dimen­
sion of the game space from K to nt, and PI decides which 
subspace would be selected. Now, the waveform and jamming 
design problem reveals itself as a power allocation TPZS game, 
where the radar system and target explore their strategies re­
spectively to maximize and minimize lb. 

IV. UNILATERAL GAMES 

This section considers the extreme cases, where one player 
has complete knowledge of the other's strategy. Therefore, that 
player can always choose the best response, and the game re­
duces to a unilateral optimization. 

A. Radar Unilateral Games 

If the MIMO radar knows the target's strategy, the game de­
generates to a classical power allocation problem [4], [7], where 
the radar assigns its power into the noise Uamming) space to 
maximize the MI. Mathematically, it is formulated as 

- H 
max lb' s.t. Tr(SS ) = Tr(A8) :::; Ps (17) 
A"Pl 

where P8 denotes the available waveform power. Without loss 
of generality, we assume O"r + O"l" ~ O"~ + O"r ~ ... ~ O"k + 0"[( 
and 0"]' ~ 0"2 ~ ... ~ O"~, in this subsection. Based on Lemma 
2 in Appendix A, (17) is maximized if PI is chosen as PI = P, 
where P is a skew identity matrix 

p= L '] (18) 

and yields 

max flog (b 0"'10"1. w + 1) 
crt i=l (TK+l-i + O"K+l-i 

n, 

s.t. L 0": :::; P8 • (19) 
i=1 

The above optimization involves a concave and monotonic in­
creasing objective function and linear constraints. Its optimal 
solution can be obtained via Lagrange multipliers, and yields a 
water-filling strategy [4], [7] 

(20) 

where (x)+ ~ max{O, x}, and Al > ° is chosen implicitly 
via .z:::::~~1 0"'1 = Ps • Obviously, the optimal strategy distributes 
more power for an activated subspace-where 0"'1 > O-with a 
lower (O"k+1-i + O"[(+I_i) value. 

B. Target Unilateral Games 

On the other hand, suppose that the target knows the power 
allocation strategy of the MIMO radar. The game degenerates to 
a jamming unilateral optimization, as the radar is not aware of 
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this. In such a circumstance, the target will allocate its jamming 
power to minimize lb. Mathematically, this is expressed as 

(21) 

where Pb bounds the jamming power. For a given radar power 
allocation strategy, PI plus As = diag([iTf, iT~, ... , iT~t])' the 
optimization (21) is specified as 

nt 
s.t. I: iTf :S Pb (22) 

i=1 

where iTf and iTi' correspond to the ith selected jamming-noise 
subspace, and they are not necessarily identical to crf and cri'. 

The payoff function of (22) is a summation of nt separable 
subfunctions 

h (iTfliTi') = log (-b ai -w + 1) (23) 
cri + cri 

h(iTfliTi') is monotonically decreasing and strictly convex. 
Therefore, (22) has a unique optimal solution and can be found 
with Lagrange multipliers [31] 

L = flog (_~icr~~ + 1) + A2 (f iTf - Pb). (25) 
i=1 crt + cr, i=1 

Differentiating L with respect to iTf and setting the result to zero, 
we get two solutions 

(26) 

Deleting the negatives, the optimal one remains 

(27) 

where A2 > 0 satisfies L::7~1 iTf = Pb. Since the subspace se­
lect~on privilege belongs to the radar, the target can only opti­
mize its power corresponding to the selected collection. 

V. HIERARCHICAL GAMES 

The previous section investigated games with asymmetrical 
information. Here, we are interested in the hierarchical case 
[21], where the inferior player, called the leader in a game, 
knows that its strategy will be intercepted by its opponent. With 
conservativeness and rationality assumptions, the leader may 
adopt the strategy which can alleviate the worst case, and the 
game yields a Stackelberg equilibrium (SE) [21]. 

.---::-:.-:-:~~-:-:-:-:-:-:--.--
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A. Target As The Leader 

Let the radar system possess sufficient interception capacity 
that it can immediately sense interference. If the target does 
know this and behaves conservatively, the game may converge 
to a SE, which is defined as the solution of a two-stage optimiza­
tion [21] 

min max log [det (cr~rsPl(Ab + Aw )-IPi +IK)] 
Ab A.,Pi 

s.t. Tr(Ab):S Pb, Tr(As) :S Ps. (28) 

The interception capability enables the radar to optimally re­
spond to its opponent, so the results in Section IV-A are still 
applicable for the first stage. Based on (20), (28) is reduced to 

min 
O"f 

s.t. 

flog (b cricr~ w + 1) 
i=1 crK+1-i + crK+1- i 

( 
b W)+ ~ _ \ _ crK+l-i + crK+1- i 

crt - /\1 2', crh 

crt + cr1' ~ cr~ + cr2' ~ ... ~ crk -n,+1 + crx -n,+I, 
n, K 

I:cri = Ps, I: crf :S Pb. (29) 
i=l i=1 

We emphasize that the second constraint is about the ordering 
of noise-jamming power, and it is responsible for the optimal 
subspace selection. Due to the fact that 

log ( cri cr~ + 1) 
crk+1-i + crX+1-i 

{::=}l~ [(A1- (crk+1-i+crX+1_i)/cr~)+cr~ +1] 
g b + w crK+1- i crK+1-i 

{::=} log [( b cr~A1 -1)+ + 1] 
crK+l-i + crX+1_i 

,[ ( crr>-l )] {::=} log max b ' , 1 
crK+1-i + crX+l_i 

[ ( cr~Al )] {::=} max log b , 0 
crK+1- i + crX+1-i 

(30) 

where "{::=}" denotes the sign of mathematical equivalence, 
(29) could be simplified to 

(31) 

where Pc(A1) denotes the minimum power allocated to cr1, 
where 1 :S j :S K - nt, to guarantee the ordering constraint. 
It is interesting to see that the corresponding items (.) + in 
the objective function and constraint are always active simul­
taneously, due to the fact that the log(·) operation preserves 
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-Radar -Target -Noise 
123456789 123456789 

(a) (b) 

Fig. l. An intuitive explanation of the SEs for the two hierarchical games: 
(a) target as the leader, and (b) radar as the leader. The dimension of noise sub­
space is J( = 9, while that of the signal subspace is nt = 6. As for case 
(a), since the target moves first and does not know which amongst'the nt sub­
spaces' will the radar choose, it has to allocate its power to the entire noise space 
(water-filling), As for case (b), target moves late and can observe which sub­
spaces radar selected, so it only (water-filling) allocates its power to the radar-se­
lected-ones: 4-9, 

mathematical monotonicity . Now, (31) depends only on the 
crf's; one may solve it to find the equilibrium. 

Proposition 2: The power allocation SE for the hierarchical 
game with the target as the leader is 

crf = (A3 - cri)+ ,for 1 ::; i ::; K 

cr] = (min {AI - A3/cr~, Al - crK+l-)crU)+ , 
for 1 ::; j ::; nt (32) 

where A3 and Al are determined by L~1 crt = Pb and 
",n, s p 
ui=j crj = s· 

Proof' Proof is in Appendix C. • 
Intuitively, the SE can be interpreted as a two-step water­

filling as shown in Fig. l(a): first, the target conservatively fills 
its jamming power to the noise space, and then the radar injects 
its power to jamming-plus-noise space. The uniqueness of the 
SE depends on the number of maxmin solutions. If K = nt, 
Proposition 2 leads to exactly one solution; therefore, the SE is 
unique. Define the jamming power threshold Pn as 

nt 

Pn g L (crK-:-nt - crK+1-i) (33) 
i=1 

for K > nt. It is easy to check that the solution of (32) is unique 
for Pb < Pn, and thus so is the SE. However, if Pb ~ Pn, the SE 
will have multiple possibilities. For instance, let K = 3, nt = 2, 
cr1" = 2, cr2 = cr3 = 1, Pb = 2, and Ps = 2, the power alloca­
tion SEs are (Ab = diag([O, 1, 1]), rs = P 1diag([1, 1, O])Pf), 
where PI denotes an arbitrary 3 X 3 permutation matrix. The 
multiple solutions property of (32) is due to the ordering expres­
sion of (crr + cri) 's, the second constraint in (29), is not unique. 
Interestingly, all the SEs share the same MI value. No matter 
whether the SE is unique, this game is guaranteed to go to one 
of them. 

B. Radar As The Leader 

Let the target be able to sense the radar's power allocation, 
and let the MIMO radar know that it does. Then a conservative 
radar system may select its strategy based on 

max min log [det (cr~rsPl(Ab + Aw )-1 pi + IK)] 
A.,P, Ab 

s.t. Tr(Ab)::; Pb , Tr(As) ::; Ps (34) 
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in order to optimize the worst case. As for (34), the first stage in­
cludes an unknown subspace selection parameter PI; direct op­
timization is hard. But from rationality considerations we know 
the radar system will not 'pour' its power to the (K - nt) sub­
spaces with higher noise levels, because that will make the final 
result even worse. Let the radar choose the nt noise subspaces 
corresponding to eigenvalues crK+1_/s, where 1 ::; i ::; nt. 
Without losing generality, one possible choice is PI = P. As a 
result, (34) is recast as 

nt nt 

s.t. L d<+I-i ::; Pb, L cri ::; Ps· (35) 
i=1 i=1 

In additional to the optimization ordering, there is another sig­
nificant difference between (29) and (35): the jamming power' 
constraints. In the case of (29), the target moves first. It will con­
servatively fill its power to the entire noise space; therefore, the 
power constraint is L~1 cr1< ::; Pb. In the case of (35) the radar 
moves first, so the target can 'see' which subspaces are selected, 
and then it will pour the jamming energy only to them. Hence, 
the power constraints are modified to L7~1 cr~+1-i ::; Ps in 
(35), and this can be regarded as a game in a reduced space. 

A trivial optimization order swap makes the equilibrium anal­
ysis even more complicated, since the water-filling solution of 
the first stage involves a nonlinear expression of O'i' s as shown 
in (27). Fortunately, it can be indirectly solved with the help of 
Sion's minimax theorem [32]. 

Proposition 3: The optimization problem in (35) can be 
equivalently reformulated as 

min max 
O"f eri 

nt nt 

s.t. L cr~+I-i ::; H, L O'i ::; Ps. (36) 
i=1 i=1 

Proof It is clear that the domains of As and Ab are both 
linear, compact, and convex. Moreover, the objective function is 
continuous, differentiable, and quasilinear (both quasi-concave 
and quasi-convex) [31]. Based on Lemma 4 in Appendix A, the 
proposition can be proven. • 

Proposition 4: The power allocation SE for the hierarchical 
game with the radar as the leader is 

crf = 0, for 1 ::; i ::; K - nt 

err = (A4 - O'i)+ , for K - nt + 1::; i ::; K 

0'] = (min {A5 - A4/0'~' A5 - O'K+l-j/O'U t ' 
for 1 ::; j ::; nt (37) 

where A4 and A5 are determined by L7~1 cr~+I-i = Pb and 
",nt s p 
ui=1 O'i = s· 

Proof' Following the proof of Proposition 2, Proposition 4 
can be proven. • 

The SE is still a two-step water-filling in a reduced space; an 
illustration is depicted in Fig. 1(b). If K = nt, the SE is unique 
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because (37) has exactly one solution. If K > nt and O":K -n, = 
O"K-n,+l' the radar can choose the subspace corresponding to 
either O":K_n, or O":K-n'+1 if its power satisfies Ps > Pn - Pb; 
therefore, the SE is no longer unique. For example, let K = 3, 
nt = 2, 0"1' = 0"2' = 3, 0"3' = 1, Pb = 1, and Ps = 3. 
Both (Ab = diag([0,0,1],rs = diag([1, 0, 2])) and (Ab = 
diag([O, 0,1]' rs = diag([O, 1,2])) are SEs. These SEs will not 
change the final MI result, and the game will go to one of them. 

C. Discussion 

The equivalence of Propositions 2 and 4 is straightforward 
if K = nt. This subsection discusses their relationship for 
K > nt. Comparing (32) and (37), we see that if and only if (iff) 
Pb is large enough to activate the noise subspace corresponding 
to O"~(" -n,' say Pb > Pn , the two propositions will result in dif­
ferent strategy pairs, and it is interesting that the power alloca­
tion strategies of the radar are identical in both cases. This can 
be explained from two perspectives: 1) if Pb :S Pn , the two 
propositions are the same, so O"r s are as well; 2) if O"k -n, > 0, 
we must have 

O"r + O"Y' = '\3 (or '\4), for K - nt + 1 :S i :S K (38) 

for both of them. Even though '\3 -:j; '\4, they will both induce 
a uniform power allocation in the second step, and hence the 
strategies remain identical. An immediate corollary of this phe­
nomenon is that the power allocation of the MIMO radar be­
comes uniform with the increase of Pb for both games, because 
the jamming-plus-noise subspaces, (O"f +O"Y')' s, tend toward flat 
as shown in (38). 

Another interesting question for hierarchical games is 
which role, leader or follower, is better. If the minmax and 
maxmin optimizations converge to the same solution, the 
two roles are equivalent as lbin max = lbax min. However, 
if they induce different power allocation strategies, we have 
lbin max > lbax min, which means that it is better to be a 
follower for both the target and the radar. In brief, the follower 
is not worse than the leader; however, that whether the former 
is better than the latter depends on the jamming power Pb and 
the dimension of signal subspace nt. 

In the following, the phrase minmax (maxmin) game is em­
ployed for simplicity to indicate a hierarchical game with radar 
(target) as leader. 

VI. GAMES WITH SYMMETRIC INFORMATION 

A. Nash Equilibrium 

In the unilateral and hierarchical games, the available infor­
mation for the two "players" is asymmetric. This section studies 
the cases with symmetric information, where neither has knowl­
edge of the other's strategy. In such circumstances, the Nash 
equilibrium (NE) is a good tool to analyze the outcome of the 
strategic interaction [21]. If a game is competitive and has a 
unique pure-strategy NE, all the players prefer to stay at NE 
under the assumptions of conservativeness and rationality. As 
for a TPZS game with utility function f (a, b), where a is a min­
imizer and b is a maximizer, the pure-strategy NE (a*, b*) is 
defined as [21] 

f(a, b*) 2:: f(a*, b*) 2:: f(a*, b), for Va -:j; a* and b -:j; b*. 
(39) 
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Informally speaking, the NE of a TPZS game on a continuous 
space is the saddlepoint of its utility function, and no player 
can do better by unilateral deviation. We need the following 
proposition. 

Proposition 5: Let f(a, b) be a real valued function for a 
TPZS game, where a E A is a minimizer and b E B is a maxi­
mizer. Suppose A x 8 -:j; 0 are the solution subspace of 

(a,b) = argminmaxf(a,b) = argmaxmin f(a, b) (40) 
aEA bEB bEB aEA 

and then we have the following: 
• if (a, b) E A x 8, and then (a, b) is a NE. 
• if (a, b) tJ. A x 8, and then (a, b) could not be a NE. 

Proof' Suppose (al, bl ) E A x 8, (a2' b2) E A x B but 
(a2,b2) tJ. A x 8. It is direct to get (al,b2) E A x Band 
(a2' bl ) E A x B. The proof of (aI, bl ) being a NE is straight­
forward. The following will focus on the second by contradic­
tion. Assume (a2' b2) to be a NE. With the definition of NE and 
the properties of (aI, bl ), we have 

f(a2, b2) 2:: f(a2, bl ) 2:: f(al, bl ) 

f(a2, b2) :S f(al, b2) :S f(al, b1 ). (41) 

As a result, 

f(a2, b2) = f(al, bl ) = min max f(a, b) = max min f(a, b) 
aEA bEB bEB aEA 

(42) 

holds true, and then we obtain (a2' b2) E A x 8. Clearly, the 
conclusion contradicts the assumption; therefore, (a2' b2) could 
not be aNE. • 

The first result of Proposition 5 can also be found in discrete 
matrix game analysis [21], while the proof procedure is bor­
rowed from the critical points analysis in [33]. Here, we restate 
them in Proposition 5 for mathematical completeness. Based on 
Proposition 5, the NEs for the MI game are summarized in the 
following proposition. 

Proposition 6: Defining the jamming power threshold Pn as 
in (33), the NEs for the MI based TPZS games are the following: 

Bl) if K = nh the NE exists and can be obtained via (32) 
or (37); 

B2) if K > nt and Pb :S Pn , the NE exists and it is the 
common solution of (32) and (37); 

B3) if K > nt and Pb > Pn , the NE does not exist. 
Proof: If K = nt, (32) and (37) are the same. With Propo­

sition 5, result B 1) holds true. As for K > nt, it is easy to find 
that iff :E~~n, O"f -:j; 0, (32) and (37) could induce two different 
results. Equivalently, if Pb :S Pn , the minimax and maxmin opti­
mizations will have the same solution; therefore, B2) holds true. 
The third one is somewhat complex, and it will be proven by 
contradiction. Let 

As = diag ([iTi, ... ,iT;, Olx(n,-p)]) 

Ab = diag ([iTt iT~, ... ,iTk]) = pi AbPl 

Aw = diag ([iTi, iT2',' .. ,iTK]) = pi AwPl (43) 

where p :S nt)s tpe number of activated signal subspaces. As­
suming that (As, Ab) is a NE, we must have the following: 

---:-::-:--:-:-:-::~---
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Cl) ~b - ~b - - ~b - O· 
v p+l - v p+2 - ... - v K - , 

C2) max{O'i + O'f, 1 ::; i ::; p} ::; min{O'i,p + 1 ::; i ::; 
K}; 

C3) O'f + O'~ = O'~ + O'~ = ... = 0'; + 0';. 
Note the following: 1) if ~~:e+1 O'f > 0, the target will have 

incentive to deviate from (Aa, Ab), since reallocating the power 
portion 2::[~P+1 O'f into the p selected subspaces will result in a 
smaller MI; 2) if C2) is not satisfied, the radar will have incentive 
to deviate from (A., Ab ) with a similar argument; and 3) C3) 
can be obtained with an approach similar to that of Appendix C. 
Recalling the ordering inequality (15), 

min {O'i, p + 1 ::; i ::; K} ::; min {O"i, 1 ::; i ::; K - p} 

=O"K_p::; O"K-n, (44) 

holds true. Based on C1), C3), and (15), we have 

Combining (44) and (45) with C2), we get 

p 

O"K-n, ;::: Pb/p + ~ L O"K+l-i' (46) 
P i=l 

Substituting the precondition Pb > Pn into (46), we obtain 

p 

'W P/ 1"w O"K-n,> nP+-L..,.O"K+l-i 
p i=l 

(47) 

Apparently, the NE assumption leads to a contradiction in (47). 
Therefore, (Aa, Ab) cannot be a NE, and B3) holds true. • 

The existence of a NE depends on K, nt, Pn, and Pb. As 
for K > nt, it may not always exist. The behavior of game 
players is easy to predict if the NE exists; otherwise, it will de­
pend on other factors that are more intricate to formalize. Re­
garding a matrix zero-sum game with finite strategies, one may 
resort to mixed-strategy approach, in which each player chooses 
a number of strategies with a reasonable probability [21]. In­
terestingly, the existence of a pure- (or mixed-) strategy NE is 
guaranteed in theory for a matrix zero-sum game. The games 
in a continuous space naturally have an infinite number of pure 
(and mixed) strategies. In the absence of a NE, strategy anal­
ysis becomes rather difficult and heuristic. Although the game 
may not converge to a stationary strategy pair in this case, the 
players at least can play the minmax or maxmin strategy to avoid 
the worst case. 

The minmax and maxmin solutions are unique for K = nt, 
and hence so is the NE. As for K > nt and Pb ::; Pn, the 
uniqueness of NE should be discussed case-by-case, as follows. 

-.-:-:-:-:~-:-:-:-:-~-:-~-.----.-
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• If O"K_n, =I O"K-n,+1' the NE is unique, since the signal 
subspace selection for the radar is unique, and conse­
quently so is the maxmin optimization result. 

• If 0" K -n, = 0" K -n, +1 and Pa ::; P n - Pb, the power allo­
cation interaction is played in the subspaces corresponding 
to O"i, where O"K-n,+l < i ::; K, and the minmax (or 
maxmin) solution is unique, so is the NE. 

• If O"K_n, = O"K-nt+1 and Pa > Pn - Pb, the NE is 
not unique as both maxmin and minmax optimizations 
have multiple solutions. Again, let K = 3, nt = 2, 
O"f = O"~ = 3, 0"3 = 1, Pb = 1, and Pa = 3. 
Both (Ab = diag([0,0,1],ra = diag([1,0,2])) and 
(Ab = diag([O,0, 1],ra = diag([O, 1, 2])) areNEs. It is 
interesting to see that the strategy for the target is the same 
across all the NBs since Pb ::; Pn . Therefore, the radar 
could accurately infer the target's response and guarantee 
their strategy pair to be a NE. 

In short, the NE may not be unique under some circumstances. 
However, their final strategy pair may converge to a NE, as the 
radar could predict the power allocation of the target. 

B. A Conjecture for K > nt 

This subsection focuses on a special case where the noise 
subspaces are even: O"i = o"w for Vi. Based on Section V, the 
minmax strategy of the target is to spread uniformly its power 
into K noise subspaces, while its power allocation strategy for 
the maxmin game is also uniform but limited to the nt selected 
ones. The best strategy of the radar is always uniform for both 
games. As for the MI based TPZS games with symmetric infor­
mation, two questions follow: 

1) Will the MI be increased if the target uniformly concen­
trates its jamming power in (K - m), where 0 ::; m < K, 
rather than K noise subspaces? 

2) Will the MI be increased if the radar uniformly injects its 
power to nc, where 0 < nc ::; nt, instead of nt subspaces? 

These questions will be next explored under the probabilistic 
framework. Suppose that the MIMO radar uniformly allocates 
its power into nt randomly selected noise subspaces, so that the 
probability that exactly l jamming-free subspaces are chosen as 

P(l) = (7) (~t~ 7) / (~} (48) 

Define B = min { nt, m} as the maximum number of the se­
lectedjamming-free subspaces, and{3 = max{O, nt-(K -m)} 
as its minimum number; as a result, the MI expectation is for­
mulated as 

11 

Imix(m) = L P(i) lent - i)gl(m) + ig2] (49) 
i=(3 

where 

(50) 

(51) 
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Fig. 2. The MI of at SEs as functions of Pb for the minmax and maxmin games, 
where P, = 40. If Pb ::; PH' the two curves overlap, while the minmax curve 
is always above the maxmin one for Pb > PH' 
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Fig.3. The normalized jamming power allocation strategies at SEs as functions 
of Ph for the minmax and maxmin games, where P, = 40. (a) minmax game; 
(b) maxmin game. 

respectively represent the contribution of a jammed and a jam­
ming-free subspace. The comparison between lmix(m) and the 
minmax result 

(52) 
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Fig. 4. The waveform power allocation strategy at SEs as functions of Pb for 
the minmax or maxmin games, where P, = 40. With the increase of Pb, the 
strategy goes to uniform. 

is mathematically intricate. Based on various computer simula­
tion, we make the following conjecture: 

Conjecture 1: Let Pb > 0, Ps > 0, and K > nt. If m > 0, 
we have lminmax < lrnix('m). 

We will demonstrate Conjecture I numerically in Section VI. 
If Conjecture 1 holds true, the target has no incentive to shrink 
the size of its jamming space. Then the first question could be 
answered. Now, the second one becomes clear. If the target uni­
formly distributes its power in the entire noise space, the radar 
will utilize nt subspaces and uniformly pour its power within 
them. 

Theoretically, the NE does not exist for this special case. 
The noncooperative game would be unpredictable, as no single 
strategy pair can dominate the others. However, if the two 
players consider the expectation of loss instead of loss itself, 
the minmax solution would be the best strategy pair for both of 
them. In other words, the minmax solution is not the best based 
on equilibrium theory; however, it is the best one in probability 
when one player could not accurately infer the strategy of the 
other. 

VII. NUMERICAL RESULTS 

A. Examples for Hierarchical Games 

This subsection concentrates on the hierarchical games. In 
simulations, we set nt = 4, nr = 6, and K = 6. The noise 
powers are respectively chosen as 0'1 = 10, 0'2 = 8, 0'3 = 7, 
0'4 = 4, 0'5' = 2, and 0'6 = 1. Finally, O'h = 1 for simplicity. 

In the first example, Ps is fixed at 40, while Pb varies from 
1 to 40. The MI of minmax and maxmin solutions for the hi­
erarchical games are depicted in Fig. 2. Clearly, both of them 
are decreasing functions of Pb • Moreover, if Pb is below a cer­
tain level, Pn = 18, the minmax and maxmin solutions are 
the same, while the minmax curve is always above the maxmin 
one if Pb > Pn . This coincides with the theoretical analysis in 
Section V. The dashed threshold line also acts the bound for the 
existence of pure strategy NE for the games with symmetric in­
formation. 

Figs. 3 and 4 show their power allocation equilibria. The equi­
libria perform like a two-step water-filling: firstly, a noise sub­
space with a low O'i obtains more jamming power; second, the 
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subspace with a small (uf + ui) will obtain more waveform 
energy. From Fig. 3, we observe that all the six uf's will be 
sequentially activated with the increase of Pb for the minmax 
results, while only uj's, 3 :::; j :::; 6, will be sequentially ac­
tivated for the latter. From Fig. 4, we know that the waveform 
power allocation strategy tends toward uniform with an increase 
of Pb , Here is an explanation. If Pb is sufficient large, all the se­
lected uf's will be activated in the first water-filling step; there­
fore, we have uf + u,!, = A for Vi. As the ui's are obtained 
by a water-filling on (uf + u'!')' s, the optimal power allocation 
strategy becomes uniform. Note that since the waveform power 
allocation strategies are the same for both games, only one plot 
is shown. 

B. Examples for the Conjecture 

This subsection demonstrates Conjecture 1 in Section VI. For 
simplicity, we set Uh = 1 and U w = 1. The numerical results 
with different system parameters are listed in Fig. 6. In the first 
simulation, we set K = 8, nt = 5, and Ps = 40, while the 
parameters are chosen as K = 13, nt = 9, and Pa = 20 in 
the second one. In the figure, "nc = 4" denotes the MI curve 
obtained by shrinking the size of the waveform space from nt 
to nco From those figures, we observe that the MIs will be en­
larged if the size of jamming space (K - m) is reduced, and 
they are always above the minmax results. However, if the size 
of the waveform space becomes smaller, the MIs will be lower 
than the minmax results. This is consistent with Conjecture 1. 
Note that many simulations with different parameters have been 
performed; the observations coincide. These presented are rep­
resentative of all that we have seen. 

VIII. CONCLUSION 

The interaction between a target and a MIMO radar-both 
smart-is investigated from a game theory perspective. Since 
the target and the radar are completely hostile, their interaction 
is modeled as a two-person zero-sum game, and we adopt mu­
tual information as our criterion. Unilateral, hierarchical, and 
symmetric games are studied based on the available informa­
tion set for each player. The optimal strategies for the unilateral 
games are forms of water-filling, and they can be analytically 
derived via constrained optimization techniques. Assuming 
conservativeness and rationality, the optimal strategies for 
the hierarchical games are Stackelberg equilibria, of which 
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Fig. 6. Comparisons of iminmax, imaxmin, imix(rn), and i min max(nc ) for 
c!ifferent parameter sets. If the size of jamming space (K - m) decreases, the 
Imix(rn) will become larger. (a) K = 8, n, = 5, and P, = 40; (b) K = 13, 
n, = 9, and P, = 20. 

the closed-form expressions can be considered as two-step 
water-fillings. Nash equilibria are the optimal strategies for the 
third case; its existence conditions are discussed. 

ApPENDIX A 

SEVERAL USEFUL LEMMAS 

Lemma 1,' Supposing the eigendecomposition of two n x 
n positive semidefinite Hermitian matrices A and B be A 
U AAAU:;[ and B = U BABU~ respectively, where AA ~ 



SONG et al.: THE MIMO RADAR AND JAMMER GAMES 

diag([a1' a2, ... ,anD with a1 2: a2 2: ... 2: an, and AB ~ 
diag([fh, (32, ... ,(3nD with (31 2: (32 2: ... 2: (3n, we have 

n n 

II (a'i + (3i) :::; det(A + B) :::; II (ai + (3n+1-i). (53) 
i=l i=l 

The lower bound holds iff U A = U B, while the upper one is 
achieved iff U A = U BP, where 

(54) 

is a skew identity matrix. 
Proof' Proof can be found in [34]. • 

Lemma 2: Suppose that the diagonal elements of matrices 
A = diag([a1' a2,' .. ,anD and B = diag([b1, b2, .. " bnD are 
both in decreasing orders: a1 2: a2 2: ... 2: an 2: 0 and 
b1 2: b2 2: ... 2: bn > 0, and then we have 

det(AB- 1 + In) :::; det (P1APi B-1 + In) 

:::; det(P APT B-1 + In). (55) 

where P 1 is an arbitrary permutation matrix, while P is defined 
in (54). 

Proof' Lemma 2 is a special case of Lemma 1. • 
Lemma 3: Define fz(x) = log(x), where x > O. Let Xl > 

X2 > 0, and then we have 

where 0 <.6.x:::; (a: l !X2). 

Proof' Since fz (x) is differentiable, we have 

C1 ~ fz(X1 - .6.x) + fz(X2 + .6.x) - fz(X1) - fz(X2) 
X2+fl.X Xl 

j. ofz(x) dx _ j' ofz(x) dx 
ox ox 

~ Xl-fl.a: 

a:2+fl.x Xl 

J ~dx- J ~dx. (57) 

X2 Xl-~X 

Since ~ is monotonic decreasing, and since Xl > Xl - .6.x 2: 
X2 + .6.x > X2, we have 

1 
-dx = O. 
x 

(58) 

Therefore, the result can be proven. • 
Lemma 4: Let X be a compact convex subset of a linear space 

and Y be a convex subset of a linear space. If f(x, y) is a real­
valued function on X x Y with the following: 

• f (x, .) is upper semicontinuous and quasiconcave on y, 
for 'Ix E X; 

• f (', y) is lower semicontinuous and quasiconvex on X, for 
'Vy E Y; 
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and then we have 

min max f(x,y) = maxminf(x,y). 
xEX yEY yEY xEX 

(59) 

Proof' Lemma 4 is known as Sion's minimax theorem, and 
proof can be found in [32]. • 

APPENDIX B 
PROOF OF PROPOSITION 1 

Proof' Firstly, let Ub = U wP2, and then we have 

mFh -¢:::::? mFdet (er~SSH + Rb + Rw) 

-¢:::::? mFdet(er~SSH+ Uw (P1AbPi+Aw) U~) . 
(60) 

Based on Lemma 1 in Appendix A, the maximum can be ar­
rived iff SSH shares the same eigenvectors as Rw, which means 
Us = UwP1. Therefore, ifUb is set as UwP2, Us hasnoincen­
tive to deviate from U wP 1. With a similar approach, it is easy to 
show that if Us = U wP 1, U b has no incentive to deviate from 
Uw P 2 . Hence, the first conclusion can be proven. 

In addition, the space equilibrium, say (UwP 1 ,Uw P 2 ), 

holds for arbitrary Ab and r s values. Therefore, it is invariant 
to Ab and r s' In the following, we will prove its uniqueness of 
invariance by contradiction. Suppose that Us = Us =1= U wP 1 
and U b = U b =1= U wP 2 compose another space equilibrium, 
which is invariant to Ab and r s. Based on Lemma 1, SSH and 
(Rb + Rw) must be simultaneously diagonalized 

U~ (UbAbU~ + U wAwU~) Us = E1 (61) 

where E1 is a positive semidefinite diagonal matrix. Let A.b 
be an arbitrary positive semidefinite diagonal matrix satisfying 
Tr(A.b) = Tr(Ab) andA.b =1= Ab• As (Us, Ub) is invarianttoAb, 
we also have 

where E2 shares the same properties as E 1. Combining (61) and 
(64), we obtain that 

-H- - -H-
US Ub(Ab - Ab)Ub Us = E1 - E2 (63) 

holds for arbitrary Ab. Since (Ab - Ab) and (E1 - E 2) are both 
nonzero diagonal matrices, we have U8 = UbP 3 , where P 3 

is an arbitrary permutation matrix. Substitute it into (64), we 
obtain 

T - -
Since (P1E2P 1 -Ab) andAw are both diagonal, we get Ub = 
U wP 4 again, where P 4 is a permutation matrix too. Apparently, 
this contradicts the assumption, and (Us, Ub) could not be an 
invariant equilibrium. Therefore, (U wP 1, U wP 2) is a unique 
invariant span, and Proposition 1 can be proven. • 

APPENDIX C 
PROOF OF PROPOSITION 2 

Proof' As opposed to (19) and (22), the objective function 
of (31) is not separable as ),1 may depend on erf's. The direct 
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application of a Lagrange multiplier optimization may not be 
proper. Here, we demonstrate the proposition with the help of 
the characteristics of optimal solutions: 

Dl) If ui = 0, we have Uk+1-i = 0; if Uk+1-i ¥ 0, where 
i ~ nt, we have ui ¥ O. 

D2) For 1 ~ i < j ~ nt, if uk+1-j > 0, we have 

Uk+l-i > o. 
D3) If Uk+1-i > 0 and uk+1-j > 0, and then we have 

U~<+I_i +uK+1-i = uk+1-j +UK+l-j; if Uk+1-i > 
o and u1<+1-j = 0, we have Uk+l-i + uK+l-i ~ 
uK+l_jo 

Results Dl) and D2) can be easily verified by contradiction. 
Moreover, D2) is explained as that the noise subspace corre­
sponding to a lower uk value will be earlier to receive jamming 
power. The following focuses on the proof of the third one. Let 
Uk+1-i > 0, Uk+l-j > 0, and i,j .~ nt, and then we have 
ui > 0 and uj > 0 based on D1), or equivalently, 

b + w 
Al -

uK+1-i uK+i-i 
>0 (65) 

u 2 
h 

b + w 
Al -

uK+1-j uK+1-j 
>0 (66) 

u 2 
h 

u b +uw I A I K+1-i K+1-i >0 (67) og 1 - og 2 
u h 

u b + U'W I A I K+1-j K+1-j >0. (68) og 1 - og 2 
u h 

Therefore, the contribution of U~<+1-i and Uk+l_j in the ob­
jective function of (31) is 

Cl (Uk+1-i' uk+1-j) =2log (U~Al) 
-log (U1<+1-i+UK+1-i) -log (Uk+l-j+UK+l-j)' (69) 

Without losing generality, we assume that the optimal solutions 
Uk+1-i and Uk+l-j could be 

(70) 

Based on Lemma 3 in Appendix A, it is always pos­
sible to find a positive number t.., where 0 < t.. < 

. {(7~±l_i+(7K±l_i-(7~±l_j-(7K±l_j) b } sao's-
mIn 2 ,uK +1- i ' 

fying 

Cl (U~<+I-i - t.., U~<+I_j + t..) < C1(U~<+I_i' uk+1-j) . 
(71) 

Therefore, Uk+1-i and Uk+l_j cannot be the components of 
an optimal solution; this contradicts the assumption. Note that in 
the derivation of (71), we use the fact that Al will keep constant 
in the adding-subtracting processes, since Uk+l-i and Uk+l-j 
are divided by the same denominator u~ in waveform power 
constraint. The latter part of D3) can be similarly proven, and 
D3) holds true. D1)-D3) guarantee a water-filling solution of 
u~' s with a total jamming power constraint. Substituting them 
into (20), the proposition can be proven. • 
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