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As the number of electric vehicles (EVs) grows, their electricity demands may have 
significant detrimental impacts on electric power grid when not scheduled properly. 
In this paper, we model an EV charging system as a cyber-physical system, and design a 
decentralised online EV charging scheduling algorithm for large populations of EVs, 
where the EVs can be highly heterogeneous and may join the charging system 
dynamically. The algorithm couples a clustering-based strategy that dynamically 
classifies heterogeneous EVs into mUltiple groups and a sliding-window iterative 
approach that schedules the charging demand for the EVs in each group in real time. 
Extensive simulation results demonstrate that our approach provides near-optimal 
solutions at significantly reduced complexity and communication overhead. It flattens the 
aggregated load on the power grid and reduces the costs of both the users and the utility. 
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1. Introduction 

An increasing number of electric vehicles (EVs), including plug-in hybrid EVs (PHEVs) 
and plug-in EVs (PEVs), are emerging in the automobile market. While the EVs can 
incorporate multiple renewable energy sources, avoid the pollution of exhaust and reduce 
the emission of greenhouse gases, their charging demand may also bring detrimental 
impacts on the power grid, especially when it is not managed properly. It has been reported 
that with battery capacities varying from 15 to 50 KWh, EV s are expected to double the 
average household load during charging time [14]. Hence, a major challenge is how to 
design a charging system that supports the EVs without causing much stress to the 
traditional power generation and transmission systems. 

A straightforward way to optimise EV charging is through a centralised approach where 
a central controller collects the information of all the EV s and power plants, and calculates 
the optimal charging schedules directly. This approach becomes computationally infeasible 
when the EV population becomes very large. More importantly, it faces social and legal 
balTiers, since users are reluctant to allow the utility to directly control their devices. An 
alternative approach is through distributed optimisation where each user calculates its 
charging schedule locally based on real-time information from the utility. This approach 
naturally models the Smart Grid as a cyber-physical system (CPS), tightly coupling the 
cyber and physical components, and enabling a better coordination among communication, 
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control and computation inside the system. We refer to this distributed control strategy as a 
CPS approach henceforth. While taking advantage ofthe communication, computation and 
control capabilities in Smart Grid, using this CPS approach to schedule large popUlations of 
EVs still faces many challenges. First, large populations of EVs (in millions or tens of 
millions) can incur significant communication overhead between the EVs and the utility. 
Second, the EV popUlation can be highly heterogeneous with varying charging demands 
and charging time preferences, so the system needs to deal with dynamic EV arrivals and 
optimise the charging schedule accordingly. In addition, EVs can act not only as power 
consumers, but also as power suppliers through vehicle-to-grid (V2G) [8,15], which may 
further increase the complexity of EV charging scheduling. 

In this paper, we address the above problems and develop a decentralised online EV 
charging scheduling algorithm for large populations of EV s that are heterogeneous and 
may join the charging system dynamically. The algorithm couples a clustering-based 
strategy that dynamically classifies the EVs into multiple groups and a sliding-window 
iterative approach that schedules the charging for the EVs in real time. We evaluate the 
performance of our algorithm as well as the computation and communication overhead 
through extensive simulations, and show that our approach provides near-optimal solution 
at significantly reduced complexity and communication overhead. It flattens the 
aggregated load on the power grid, and reduces the costs of both the users and the utility. 

The rest of the paper is organised as follows. Section 2 reviews related work. Section 3 
describes the EV charging problem setting and the high-level approach. Sections 4 and 5 
present, respectively, the grouping algorithm and the distributed online scheduling 
algorithm. Section 6 evaluates the performance of our algorithms through extensive 
simulation. Finally, Section 7 concludes the paper. 

2. Related work 

Several existing studies adopt centralised approaches where the controller has complete 
information of all the EVs. Su and Chow [24] proposed a time-of-use-based algorithm, an 
estimation of disttibution algorithm (EDA) based charging algorithm [25] and a particle 
swarm optimisation method [26] for a large number ofEVs at a municipal parking station. 
The authors in Refs [16,9,7] analysed and modelled the EV charging problem so that the 
controller can collect full information of all the EVs and all power plants. However, due to 
the high computation complexity, the above approaches can only be applicable to a limited 
number of EVs. Moreover, the centralised approach typically faces the social and legal 
barriers, as the users are reluctant to let the third party have direct control on their devices. 

The drawbacks of centralised solutions have motivated several studies that adopt 
distributed approaches. Rotering and Ilic [22] used dynamic programming to find 
economically optimal solutions for PHEVs based on the forecast of future electricity and 
gas prices. Their work focuses solely on reducing the cost of the users, not considering the 
potential impact of charging load on the grid. Mets et al. [19] presented energy control 
strategies based on quadratic programming, aiming to minimise the peak load and flatten 
the overall load profile. The main idea is to charge the EVs when the predicted global base 
load is low. When applying this approach to large populations of EVs, the EVs can act in 
unison and hence the charging demand can create new load peaks. Fan suggested that the 
users can adapt their charging rates according to their preferences [10], where the user 
preference is modelled as a willingness to pay parameter, which will impact the price and 
charging rate. However, such business model (price bidding) is not adopted for home users 
by the utilities in practice. Ma et al. [18] proposed a decentralised charging control 
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algorithm for large popUlations of PEVs using Nash certainty equivalence principle. 
The idea is that each EV interacts with the effect of the overall charging strategy of the 
entire population. Their scheme introduces a tracking cost that punishes the EVs for 
deviating from the average behaviour, which is not suitable to highly heterogeneous users. 
Our work directly takes account of heterogeneous charging characteristics, and optimises 
the charging schedule for every individual EV. 

Several recent studies are on demand management for general electric devices 
[21,6,20,12,23]. Although these approaches can be applied to EV charging, they are not 
applicable to large populations of heterogeneous EVs. Furthermore, they do not explore 
the various tradeoffs in computation, communication and control. Our study differs from 
them in that we combine a grouping strategy and a sliding-window iterative approach that 
dynamically calculates the charging schedule to accommodate dynamic EV arrivals. 
And we explicitly take a CPS approach that exploits the various tradeoffs. 

3. Problem setting and high-level approach 

In this section, we first describe the various assumptions on system architecture, and then 
introduce the EV charging model, and the cost and pricing models. At the end, we briefly 
outline our high-level approach towards the EV charging scheduling problem. 

3.1 System architecture 

We consider a smart grid with significant penetration of EVs. The goal of the smart 
charging system is to schedule the charge/discharge of the EV s to reduce the strain on the 
power system, and to take advantage of real-time price rate to lower the cost. An example 
infrastructure of a smart EV charging system is illustrated in Figure 1. For simplicity and 
clarity, we make the following assumptions: 

• All the EVs are served by the same utility4 and are equipped with smart charging 
controllers (e.g. as part of a smart metering infrastructure). A smart charging 
controller has both computation and control capabilities - it calculates the 
charging schedule for an EV and can intelligently manage the charging load. 

• The EVs have two-way communication capabilities (e.g. through cellular data 
networks, home network or power line communication) and exchange data with the 
information centre. Specifically, in the grouping scheme (Section 4), EVs upload the 
charging properties to the information centre, while the information centre broadcasts 
the group information to EVs; in the online scheduling algOlithm (Section 5), the 
information centre broadcasts real-time global load/price information to the EV s, and 
the EV s report their charging schedules to the information centre. 

• The clocks of the system participants, i.e. the utility and the EV s, are synchronised. 
It can be achieved using GPS or Internet time synchronisation service. 

• The EVs can be equipped with bidirectional inverters so that they can act as not only 
power consumers but also power suppliers, delivering electricity back to the grid, 
known as V2G. 

3.2 EV charging model 

Let N denote the set ofEVs or users (we use EVs and users interchangeably in this paper). 
For EV i EN, let Bi denote its battery capacity and YJi denote its battery 
charging/discharging efficiency. Without loss of generality, we assume that all the EVs 
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Figure 1. Infrastructure of a smart BV charging system. 

prerGlid 

t)islrlbution 

Wire.less tiscr 

are charged within a certain time period (e.g. 24h). The charging schedule of an EV is 
discretised into multiple control intervals, each of length At (e.g. At = 5 min). 
The charging profile (i.e. the charging power for each control interval) of EV i is 
represented by a vector Li = {i;, t = 1, ... , T}, where l; denotes the charging power for 
interval t and T is the index of the last control interval. 

Let T~ and T~ denote, respectively, the start charging time and end charging time 
(the expected time when the EV is unplugged) for EV i. Let l~ax denote the maximum 
charging power for EV i. Thus, 0 :5 l; :5 l~ax when EV i is being charged, l; < 0 when EV 
i delivers energy back to the grid (i.e. with V2G) and l; = 0 for the non-active period. 

For EV i, let x; E [0,1] denote the state of charge (SOC) at t and let E; denote the 
amount of energy required at t (specifically, Eh is the initial energy requirement). Then, 
we have 

. (1 - :i;)B i 
E'= t t ., 

1')' 
(1) 

3.3 Load demand and cost 

We categorise the load on the power grid into two types: the traditional non-EV load and 
EV charging load. Let It and l~ denote, respectively, the global total load and the global 
non-EV load at time t. Then 

_~ i 0 
It - ~lt+lt· 

iEN 

(2) 
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We assume that l~ is known beforehand since CUlTent demand forecasting system [e.g. the 
automated load forecasting system of California ISO (CAISO) [5]] can predicate the non­
EV load (or base load) accurately. 

The marginal cost of generation has remarkable correlation with the total load demand 
[18]. Therefore, we define the cost ofthe utility for generating the electricity at time t as a 
function of the instantaneous global load II and denote it as Ct(lt). Clearly, the utility 
minimises the generation cost for the entire charging period, i.e. 

T 

minimise: L Ct(lt)· 
1=1 

(3) 

The cost function can be time dependent, i.e. cost functions for different times and for 
the same time on different days can be varying. Furthermore, we assume that the cost will 
increase as the global load rises. An example of cost function is the two-step conservation 
rate model used by BC Hydro [1]. Also, it is possible to determine (predict) the short-term 
cost functions. Hence, we assume that the cost functions are 1m own prior to the optimisation 
process. 

3.4 Pricing and billing 

Let bi denote the bill (i.e. financial cost) of user i for EV charging. Intuitively, one may 
think of a pricing model that calculates the bill of user i as the summation of the 
instantaneous price Pt times the instantaneous load l:, i.e. Lt ptl;. However, such a pricing 
model is not directly applicable to the decentralised charging scenario. This is because the 
users are non-cooperative and make independent decisions. Thus, when the price rate is 
announced by the utility, such a pricing model will incentivise the users to charge their 
EV s when the price is low (i.e. when the forecasted global load is low). In that case, a large 
population of EVs may act in unison, and create undesired load peaks on the grid. 

The study by Mohsenian-Rad et al. [20] proposes a billing scheme where the bill of a 
user is proportional to its total energy consumption, i.e. bi oc Eb. We believe that the bill of 
a user should also be affected by the time of charging (since the cost of electricity varies 
over time). Therefore, we extend their scheme and design a cost sharing-based pricing 
model that takes the time of charging into account. In our model, the bill of a user is 
proportional to the weighted average energy consumption, i.e. 

Ei T~ 
bi oc O'i = . 0 . ~ Wt, 

T' -T' ~ 
e s t=T~ 

(4) 

where we introduce the weight, WI E (0,1) for every time interval t (t = 1, ... , T). 
The weight is small for off-peak hours and large for peak hours in general. Specifically, we 
provide two ways to define weight Wt. The first way is to define Wt to be proportional to the 
non-EV load l~, i.e. 

(5) 

The second way is to define Wt to be proportional to the number of users at time t, i.e. 

I { if T~ < t, T~ > t} I 
(6) 
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In either way, the EV users are encouraged to charge their EV s during the off-peak hours 
(when the global load is low or when the number of active users is small). For any two 
users i and}, from (4) we have 

(7) 

Summing up (7) across all the users yields 

2: bj = "E.jEN aj b i . 

jEN ai 
(8) 

Define the price-to-cost ratio [20] A5 as 

A = "E.jENbj 

""T ' L..-t=1 Ct(lt) - Co 
(9) 

where Co denotes the cost of providing energy for non-EV load, and the denominator 
denotes the cost of providing energy for EV charging. Combining (2), (8) and (9), it yields 

(10) 

In (10), the only variable is the charging profile Li = {l~, t = 1, ... ,T}, for i EN. 
Removing all the invariable components from (10), user i can minimise the bill by 

solving the following minimisation problem: 

miniIJ1ise: t Ct(lt) = t C t (/~ + 2: I{ + I~) , 
L t=1 1=1 jEN\{i} 

(11) 

which is essentially the same as (3). Therefore, under the above pricing schemes, the utility 
and the users have the same optimisation objective. 

3.5 High-level approach 

For large populations of EV s, obtaining the optimal charging schedule in real time will 
incur considerable computation and communication overhead, especially when the EVs 
may join the charging system dynamically. To reduce computation and communication 
overhead, we combine a grouping algorithm and a sliding-window iterative scheduling 
algorithm (see Sections 4 and 5, respectively). To accommodate dynamic EV arrivals, 
both algorithms run in an online manner. 

Our high-level approach, as illustrated in Figure 2, is as follows. First, the information 
centre periodically collects the charging characteristics of the EVs that have joined the 
system. Based on such information, it groups those EVs into K groups dynamically, where 
EV s of similar charging characteristics are grouped together. Such a grouping mechanism 
is reasonable, as the inherent similarity of travel patterns in humans [11] can lead to 
similarity in charging patterns. After the EVs are grouped, the optimisation process can be 
carried out over the K groups instead of the individual EVs, and hence the complexity of 
optimisation, as well as the communication overhead, will be greatly reduced. As we shall 
see, the number of groups, K, is a system parameter. Intuitively, a larger K leads to higher 
computation and communication overhead in the distributed optimisation while it yields 
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Figure 2. High-level approach for distributed online charging scheduling for large populations of 
EVs. 

a better overall load curve. We explore the tradeoffs in choosing K through simulation in 
Section 6. 

Second, we divide the entire charging period into m cycles, and equally divide each 
cycle into K slots, one for every group. Then each group optimises the charging schedule in 
the corresponding slot (while the charging schedules of other groups remain unchanged). 
After the optimisation, the EVs in a group will adjust their individual charging rates based 
on their energy requirements. In this way, every group optimises its charging schedule once 
in every cycle, and the optimisation process repeats till the end of the entire charging period. 

4. Grouping large EV populations 

In this section, we introduce a grouping algorithm based on K-mean clustering [17] that 
classifies large populations of EV s into K groups according to their charging 
characteristics. 

The grouping algorithm (see Algorithm 1) is executed by the infonnation centre in each 
cycle. At the beginning of each cycle, all the EVs that have joined the system report their 
charging characteristics, including the start and end charging times, the energy requirement 
and the maximum charging power, to the information centre. For convenience, we denote 
the charging attributes of EV i by a vector Xi = (T:, T~, E;., l:nax).6 After receiving the 

) 

above information, the information centre first linearly normalises the attributes into a 
range of [0, 1] (for the calculation of the Euclidean distance) and then starts the grouping 
process as follows. Initially, it arbitrarily selects KEVs to be the initial centroids of the K 

groups, respectively. Let G denote the set of K groups formed by the algorithm. Then the 
algorithm proceeds by alternating between two steps: 

(1) Assignment step. Assign an EV to the group with the shortest Euclidean distance 
(breaking ties arbitrarily). That is group g is the set 

(12) 

where cg is the centroid of group g. Note that ifEV i was not previously assigned to 
group g, then increment the counter n that counts the total number of adjustments. 
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Algorithm 1 Online grouping algorithm for the information centre 

I: for cyclej = 1 to m do 
2: let tj be the start time of jth cycle .. . . 
3: every connected EV i reports Xi = (T:, T~, E:., l:nax '\ to the system 
4: arbitrarily pick K EV s and set them \0 be the 'centr6id of the K groups, respectively 
5: repeat 
6: n <-0 
7: for all EV i in the system do 
8: calculate the Euclidean distances dg = IIXi - cgll, Vg E Q 
9: find group g with the shortest distance (see (12)) 
10: if EV i was not in group g then 
11: assign EV i to group g 
12: n<-n + 1 
13: end if 
14: end for 
IS: update the centroids of the K groups (as in (13)) 
16: until n < Nt 
17: sort the groups by Tf in non-decreasing order 
18: end for 

(2) Update step. Update the centroid of each group, i.e. calculate the new means to be 
the centroids of each EV group by 

1 
cg =-1 1 LXi, Vg E g. 

g xiEg 

(13) 

The above process repeats until the total number of adjustments n in a single loop 
is less than the termination threshold Nt (e.g. Nt is 5% of the population in the system). 
At the end, we sort the groups in a non-decreasing order of T~ (such that a group with 
earlier start charging time is optimised first), and inform each EV to which group it is 
assigned. 

For a group g, the group start time T~, the group end time T~, the group energy 
requirement Ef and the maximum charging power of the group l~ax are set as follows: 

Tg = maxTi Tg = minTi 
S iEg s' e iEg e' 

(14) 

l~ax < L l~ax' (15) 
iEg 

where l~ax is the maximum charging power of user i. By (14) and (15), the common 
charging time period of the group is obtained. The above algorithm runs periodically and 
thus, it can readily accommodate dynamic EV arrivals. Furthermore, its simplicity allows 
it to run efficiently over a large population of EVs. 

5. Distributed ouline EV charging scheduling algorithm 

To optimise the EV s charging, we develop a distributed charging scheduling algorithm 
that is run locally by the EVs. The algorithm optimises over the KEV groups (formed by 
the online grouping algorithm in Section 4). Thus, it can significantly lower complexity 
compared to the algorithms that optimise over the individual EVs. 
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As illustrated in Figure 2, the algorithm relies on the two-way communication between 
the information centre and the EVs - the information centre receives the latest charging 
profiles from the EVs, then updates and broadcasts the global load; the charging 
optimisation is performed by each EV locally based on the information received from the 
information centre. 

The charging period is divided into m cycles and each cycle is divided into K slots. The 
EV s of the K groups optimise their schedules in their corresponding slots. For 
convenience, let tgj denote the time slot for a group g in the jth cycle. Let {If, t = 

tgj, ... , T} denote the latest charging profile of group g, where q = L:iEg I; is the overall 
charging power ofthe EVs in group g at time t. Let r;g denote the overall charging power 
of all the groups except group g at slot t, i.e. 

l-g = '" lh = '" "'Ii 
t ~t ~~f' (16) 

hE gig hEgIg iEh 

The procedure of the information centre is summarised in Algorithm 2. Specifically, at 
the beginning of slot g of the jth cycle, the information centre broadcasts the non-EV load 

Algorithm 2 Distributed online charging scheduling algorithm (for the information centre) 

1: for cyclej = 1 to m do 
2: for slot g = 1 to K in the cycle j do 
3: broadcast the non-EV load {~, t = tgj, ... , T} 
4: broadcast the group energy requirement Ef.,; 
5: calculate and broadcast {z;-g, t = tgj, ... , T} 
6: wait and receive charging profile {If, t = tgj, ... , T} from group g 
7: end for 
8: end for 

{l~, t = tgb ... ,T}, the group energy requirement Efgj and the aggregated load of all the 
groups except group g {l;g, t = tgb ... , T}. After that, the information centre waits for 
the updated charging profile {If, t = tgj, ... , T} from EVs in group g. The above process 
repeats until the end of the entire charging period. 

In order to optimise the charging schedule, each EV in group g, after receiving l;g 
from the information centre, optimises the group charging schedule {l~, t = tgj, ... , T} by 
solving the following minimisation problem locally. 

s.t. 

T 

minimise: '" Ct(zf + l;g + l~), Lg ~ 
t=tgj 

2::lf + l~ < Lmax, 'ift = tgj, ... ,T, 
gEg 

If ::5 l~ax' 'ift = tgj, ... ,T, 

q = 0, if t < T~ or t > T~, 

T 

2:: Ift1t = Efgj , 'ifg E Q, 
t=tgj 

(17) 

(18) 

(19) 

(20) 

(21) 
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The constraint (18) specifies that the overall EV charging power cannot exceed the 
capacity of the generation power grid Lmax. The constraint (19) specifies that the group 
charging power cannot exceed the summation of individual power constraint. The 
constraint (21) specifies that the optimised charging profile will meet the latest energy 
requirement. After solving the above problem, the EVs in group g report the updated group 
charging schedule {if, t = tg,j, ... , T} to the information centre? Furthermore, each EV 
adjusts the individual charging schedules based on its current energy requirement E~. 
Specifically, for EV i in group g, its individual charging power is adjusted to gJ 

for t = tgj, ... , T. (22) 

In this way, the group charging power if is split proportionally (without violating the 
power constraints) based on the individual energy requirement of each EV. The above 
procedure, as summarised in Algorithm 3, repeats until the end of the entire charging 
period. 

Algorithm 3 BV charging scheduling algorithm (for each BV in group g in the jth cycle) 

1: receive {l;-g, t = tgj, ... , T}, 
2: optimise the group charging power {If, t = tgj, ... , T} 
3: upload the new charging profile {If, t = tgj, ... , T} 
4: determine its charging power using (22) 

The above-distributed algorithm is inspired by the Gauss-Seidel method [2], where 
the groups run one at a time to solve the optimisation problem asynchronously. However, 
our approach differs from the studies [6,20,12] that adopt the Gauss-Seidel approach in 
the following important aspects: (1) instead of optimising the charging ahead of the actual 
charging period, our algorithm runs in an online manner and (2) instead of repeating until 
the solutions of all the groups converge, every group is optimised once in every cycle 
while the schedules of other groups remain fixed. 

The reasons why we optimise in this way are as follows. First, it takes many (typically 
> 10) rounds of iterations before the solutions for all the groups converge if adopting 
Gauss-Seidel method. Considering the communication/communication overhead, it is a 
very costly (sometimes even infeasible) process, especially when the number of the groups 
is large. Second, as EV s are assigned to groups in real time, the characteristics of the 
groups will change continuously from time to time. In that case, it is less useful to seek an 
optimal solution that is only effective for a very short period using the costly process. 
When the lengths of the cycles are short, the solution of our approach quickly becomes 
close to the optimal solution (as shown in Section 6). 

With the above unique characteristics, we refer to the proposed online scheduling 
algorithm as a grouped-based sliding-window iterative algorithm. Coupled with the 
grouping algorithm, the scheduling algorithm can accommodate dynamic EV arrivals and 
reduce the computation/communication overhead significantly. Moreover, the above 
algorithm can also be applied to obtain the charging schedules when allowing V2G 
(i.e. delivering power back to the grid when the energy is expensive or is in severe 
deficiency) by allowing the charging power rate (and corresponding constraints) of a group 
to be negative. 8 
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In this section, we evaluate the performance of the proposed algorithm. The simulations 
are based on the 5-min demand forecast published by CAISO [4]. Specifically, we 
captured the data from 12 pm March 1 to 12 pm March 2, which is shown in Figure 3(a). 
We divide this period into 24 I-h cycles. For each EV, the control interval, !:it, is set to be 
5 min, which is consistent with the data from CAISO. We assume that the EV population is 
3 million, which represents around 10% of the registered vehicles in California [3]. The 
energy requirement of an EV depends on many factors, such as battery types, charging 
efficiencies and driving behaviour. In the simulation, for simplicity we assume that the 
energy requirements of EVs follow a uniform distribution between 15 and 25 KWh. 

The global maximum load constraint is set to be 4 X 104 MW and local maximum 
charging power is set to be 5 KW. The start and end charging times of each EV are 
generated following a Gaussian distribution, as shown in Figure 3(b).9 Specifically, the 
mean start and end charging time are 6 pm and 7 am, respectively, with standard deviation 
of 2 h. Without loss of generality, we assume that the cost function of the utility is a 
quadratic increasing function of the instant global load, as shown in Figure 3(c), and solve 
the quadratic optimisation problem using CPLEX [l3]. 

In the simulation, we consider the following three charging schemes: (i) uniform 
scheme where user i charges at a fixed rate of l; = Eb/(T! - T~), Vi EN; (ii) non-V2G 
scheme where all users follow the proposed online charging scheduling algorithm without 
using V2G and (iii) V2G scheme where all users follow the proposed online charging 
scheduling algorithm and may use V2G (i.e. EVs can deliver energy back to grid). 

The metrics we use are the utility cost, user cost (bill) and peak-to-average ratio (PAR) 
of the global load. Unless otherwise stated, the price-to-cost ratio, A, is one. That is, the 
sum of the user bills equals to the cost of the utility (in other words, the system is budget 
balanced). 

6.1 Impact of the number of groups 

First, we investigate the impact of the number of groups K on the group characteristics. As 
stated in Section 4, a larger K leads to a better control of the EV s, since the EV s in the same 
group will be more 'similar' to each other. Figure 4 shows the average standard deviation 
of the start charging time T!, end charging time T~ and energy requirement Eb of the EV s 
in all the groups, when varying K from 10 to 500. Observe that the standard deviations of 
the three properties decrease as the number of groups K grows. The standard deviations of 
the three properties decrease rapidly when K increases from 10 to 100 and then decrease 
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Figure 4. Average standard deviation of all the groups versus the number of groups, K. 

slowly afterwards. Note that a larger K will also lead to higher communication and control 
overheads. In the rest of this section, we set K to be 120 and thus the length of the slot for a 
group is 30 s (l-h cycle divided by 120 slots), within which the optimisation can be 
finished by smart metres of moderate computation and communication capabilities. 

6.2 Scheduling algorithm 

In the following, we present the load results and then investigate the communication and 
computation overheads. The user and utility costs are evaluated at the end. 

6.2.1 Load results 

Figure 5(a) plots the optimised global load (including both EV and non-EV loads) curves 
under the non-V2G charging scheme. Observe that as more and more EVs join the system 
and begin charging, the global load increases correspondingly over time. As desired, the 
curves only rise during off-peak hours after the EV charging demand is properly 
scheduled, while the load at peak hours remains unchanged. The optimised EV charging 
load fills the forecasted global load valleys well. For clarity, we only show the selected 
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Figure 5. Load curves under different charging schemes. Cycle i represents the optimised load 
curve after the ith cycle. Selected curves of first nine cycles are shown. 
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scheduled load curves from the first nine cycles, i.e. before 9 pm, since most EVs arrive by 
this time (refer Figure 3(b)) and the global load curves do not change significantly. It 
actually confirms the fast convergence of our scheduling algorithm. 

Figure 5(b) plots the load curves under the V2G scheme. Observe that in addition to 
achieving the similar effect of valley filling as observed in the non-V2G scheme, it further 
shaves the load peak (i.e. from 6 to 9 pm) as the EVs are scheduled to deliver the charged 
energy back to the grid during the forecasted peak hours. In this scheme, some early 
arrived EVs will be recharged quickly during the first several hours (i.e. 1-5 pm) when 
they foresee the forecasted load peak later. Then, when it comes to the peak hours 
(the real-time cost/price is high as well), those EVs begin discharging certain amount of 
their remaining energy of the battery for gain to minimise their costs. Essentially, the EV s 
behave as an energy cache that can smooth the load demand over time and hence such 
mechanism reduces the stress on the power system. 

Figure 6(a) plots the overall EV charging load demand curves in three charging 
schemes. In the uniform scheme, the load increases synchronously when EVs join the 
charging system and decreases when the EV s leave. All the EV s maintain fixed power 
rates during their entire charging periods. On the contrary, the scheduled load curves in 
non-V2G scheme and V2G scheme are much more responsive to the non-EV load, since 
EV s can incorporate the global load information in controlling the charging load by either 
throttling the charging rate or delivering energy back to the grid (as indicated by the load 
demand being negative in the 'V2G' curve). 

Figure 6(b) plots the global load curves using the three charging schemes, respectively. 
When adopting uniform scheme, the EVs do not take the non-EV load and real-time 
cost/price into account. Consequently, as more and more EV s charge in the peak hours, the 
load demand from EVs exacerbates the already high load peak by around l3% (from 
3.0 X 104 to 3.4 X 104 MW). Using our EV charging scheme, the EV charging load 
demand is properly scheduled. When adopting the V2G scheme, the EV loads in the first 
several hours are slightly higher than those under non-V2G scheme, indicating that some 
EVs will cache some amount of energy during off-peak hours, which is delivered back 
later to shave the load peak at the peak hours. Compared with uniform scheme, the PAR is 
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Figure 7. Communication and computation of our proposed scheme and Gauss-Seidel method. 

reduced by 7.7% (from 1.178 to 1.087) under the non-V2G scheme, and is reduced by 
14.2% under the V2G scheme. 

6.2.2 Communication and computation overheads 

Our proposed algorithm uses a sliding-window iterative method, which can significantly 
reduce the communication and computation overheads compared to the Gauss-Seidel 
method. Figure 7(a),(b) plots the communication overhead (in tenns of the total number of 
messages sent and received) and computation overhead (in terms of running time in the 
simulation) in each interval using the sliding-window approach and the Gauss-Seidel 
approach, respectively. We observe that the communication and computation overheads 
under our approach are significantly lower than those under the Gauss-Seidel approach. 
On average, the total number of messages sent in our approach is only 1 % of that in 
Gauss-Seidel approach. And the average total run time of the simulation is reduced from 
9823 s (using Gauss-Seidel iteration) to 160 s (using our approach) on a PC with Intel 
Core i7 2.67 GHz and 8 G memory. 

Figure 8 demonstrates the global load comparison between the sliding-window 
approach and the Gauss-Seidel method in both 'non-V2G' and 'V2G' charging schemes. 
It can be observed that the curves in the first several hours show slight differences. 
The reason is that by the sliding-window iterative approach, the early arrived EVs have no 
knowledge of the EVs that are arrived later. Correspondingly, the early EVs do not start 
charging immediately when they foresee the predicted load valley. The Gauss-Seidel 
approach runs in an off-line manner, i.e. it has the complete knowledge of the entire 
charging period. However, the result from Gauss-Seidel is, although optimal 
theoretically, not directly applicable to an online system. By comparison, we note that 
the load curves of sliding-window iterative approach become close to the optimal Gauss­
Seidel curves quickly, and lead to similar PAR compared to the optimal Gauss-Seidel 
approach. When not allowing V2G, our approach leads to the same PAR as the Gauss­
Seidel approach; when allowing V2G, the PAR under our approach is slightly larger 
(1.55%) than that under the Gauss-Seidel approach. 
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6.2.3 User and utility cost 

Figure 9 plots the average user bill for the K = 120 groups [only the results from defining 
the weights using (5) are shown, as we get similar results when defining the weights using 
(6)]. For clarity, the results are sorted in an increasing order of the average user cost in 
each group using the V2G scheme. We can see that our proposed schemes reduce the 
average bills of the users compared to uniform charging: the average cost reduction is 
5.61 % under the non-V2G scheme and 11.55% under the V2G scheme. The cost of the 
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utility, which is the summation of the bills of all the users in the budget-balanced system, is 
reduced as well. 

7. Conclusion 

In this paper, we developed a decentralised online EV charging scheduling algorithm 
for a large population of EVs with heterogeneous requirements and dynamic arrivals. 
The algorithm couples a clustering-based grouping method that significantly reduces the 
complexity of the optimisation and a sliding-window iterative approach that reduces 
the communication and computation overhead. Simulation results show that the optimised 
charging schedules can flatten the load on the grid, and reduce the PAR and the cost of 
both the EV users and the utility. 

Acknowledgements 
This work was supported in part by a USDOT-MIT-UCONN Center for Transportation and Livable 
Systems (CTLS) grant. 

Notes 
1. Email: bing@engr.uconn.edu 
2. Email: peng@engr.uconn.edu 
3. Email: luh@engr.uconn.edu 
4. We make this assumption to simplify the communication infrastructure. The case of mUltiple 

utilities can be addressed by adding coordinators, who is responsible for information sharing 
among utilities. 

5. Typically, the price-to-cost ratio should be greater or equal to 1 as the utility does not operate at 
a loss. 

6. It is possible to incorporate more attributes (e.g. the geographic locations of the EVs) into the 
grouping algorithm, which is left as future work. 

7. All the EVs in a group solve the same optimisation problem, and hence obtain the same optimal 
solution. For simplicity, we assume that all the EVs report their solutions. This can be further 
optimised by requiring only a selected number of EVs to communicate with the information 
centre. 

8. Currently, we do not consider other indirect cost, e.g. the battery degradation cost. Incorporating 
other costs is left as future work. 

9. We make sure that the generated time frame is feasible for each EV by eliminating the 
unfeasible times. 
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