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An efficient approach for solving mixed-integer programming
problems under the monotonic condition

Mikhail A. Bragina*, Peter B. Luha, Joseph H. Yanb and Gary A. Sternb

aDepartment of Electrical and Computer Engineering, University of Connecticut, Storrs, CT,
USA; bSouthern California Edison, Rosemead, CA, USA

(Received 22 September 2015; accepted 7 December 2015)

Many important integer and mixed-integer programming problems are difficult to
solve. A representative example is unit commitment with combined cycle units and
transmission capacity constraints. Complicated transitions within combined cycle
units are difficult to follow, and system-wide coupling transmission capacity con-
straints are difficult to handle. Another example is the quadratic assignment prob-
lem. The presence of cross-products in the objective function leads to nonlinearity.
In this study, building upon the novel integration of surrogate Lagrangian relaxation
and branch-and-cut, such problems will be solved by relaxing selected coupling con-
straints. Monotonicity of the relaxed problem will be assumed and exploited and
nonlinear terms will be dynamically linearised. The linearity of the resulting prob-
lem will be exploited using branch-and-cut. To achieve fast convergence, guidelines
for selecting stepsizing parameters will be developed. The method opens up direc-
tions for solving nonlinear mixed-integer problems, and numerical results indicate
that the new method is efficient.

Keywords: integer monotonic programming; mixed-integer monotonic programming;
branch-and-cut; surrogate Lagrangian relaxation

1. Introduction

Many large systems are created by interconnecting smaller subsystems with system-
wide coupling constraints, and problems involving such systems are formulated as
mixed-integer programming (MIP)1 problems. Many such problems are modelled using
monotonic2 objective functions and linear constraints. A representative example of a
MIP problem with a linear objective function is the unit commitment problem (Guan,
Luh, Yan, & Amalfi, 1992; Guan, Luh, Yan, & Rogan, 1994) with combined cycle
units3 (Alemany, Moitre, Pinto, & Magnago, 2013; Anders, 2005) subject to linear sys-
tem-wide coupling system demand and transmission constraints. Lagrangian relaxation
(Fisher, 1973, 1981; Geoffrion, 1974; Guan et al., 1992, 1994) was historically used to
solve this problem by relaxing system-wide demand coupling constraints and decom-
posing the relaxed problem into subproblems. However, subgradient methods
(Ermoliev, 1966; Goffin & Kiwiel, 1999; Polyak, 1967; Shor, 1968, 1976) traditionally
used to coordinate subproblem solutions require solving all subproblems thereby lead-
ing to zigzagging of multipliers and slow convergence. The recent trend to solve such
problems is by exploiting linearity using branch-and-cut (Balas, Ceria, & Cornuéjols,
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1996; Hoffman & Padberg, 1993; Padberg & Rinaldi, 1991), which has been successful
for solving many problems. However, the method handles all constraints ‘globally’,
and ‘local’ subsystem characteristics of the problem are not exploited thereby leading
to difficulties when solving the unit commitment problem with combined cycle units
because complicated state transitions4 within a combined cycle unit are handled ‘glob-
ally’ and affect the solution process of the entire problem thereby leading to slow con-
vergence (Bragin, Luh, Yan, & Stern, 2014, 2015b). A representative example of a
MIP problem with a nonlinear monotonic objective function is the quadratic assignment
problem subject to linear system-wide assignment constraints (Burkard & Offermann,
1977; Dickey & Hopkins, 1972; Elshafei, 1977; Geoffrion & Graves, 1976; Koopmans
& Beckmann, 1957; Krarup & Pruzan, 1978).5,6 The presence of cross-products of bin-
ary decision variables in the objective function makes the problem nonlinear and non-
separable. Standard methods to solve the problem are the taboo search (Taillard, 1991)
and the genetic algorithm (Tate & Smith, 1995), and one possible way to solve the
problem is through linearisations (Xia & Yuan, 2006). Such linearisations are frequently
accompanied by the introduction of new constraints and decision variables. While stan-
dard branch-and-cut suffers from slow convergence as discussed before, some of the
difficulties will be efficiently overcome as will be explained in the following paragraph.

In this study, to solve nonlinear MIP problems with monotonic objective functions
and linear constraints, the new method will be developed. To provide the foundation
for the new method, the synergistic integration of surrogate Lagrangian relaxation and
branch-and-cut (Bragin, Luh, Yan, & Stern, 2015c) will be briefly reviewed in
Section 2. Surrogate Lagrangian relaxation (Bragin, Luh, Yan, Yu, & Stern, 2015a)
reduces computational requirements subject only to the simple ‘surrogate optimality
condition’, which can be easily satisfied by solving only one or few subproblems to
update multipliers thereby alleviating zigzagging of multipliers and convergence has
been constructively proved without requiring the optimal dual value. Each subproblem
can be efficiently solved using branch-and-cut without affecting the solution process of
the entire problem. Moreover, the computational complexity can be further reduced by
exploiting the fact that multipliers only affect subproblem objective functions without
affecting subproblem constraints, and therefore without affecting subproblem ‘convex
hulls’. Since subproblems are much smaller in size as compared to the original prob-
lem, subproblem convex hulls are much easier to obtain. Once obtained, such invariant
convex hulls can be reused in subsequent iterations and solving subproblems becomes
very easy. If convex hulls cannot be obtained, reusing cuts generated by branch-and-cut
in previous iterations can also reduce the computational effort in subsequent iterations.

To efficiently solve nonlinear MIP problems with monotonic objective functions
and linear constraints, the new method will be developed in Section 3. The new
method resolves the nonlinearity difficulty by first relaxing system-wide coupling con-
straints and then by exploiting monotonicity of resulting subproblems through the
dynamic linearisation. Since the objective function of the relaxed problem consists of
the monotonic objective function of the original problem and the part that is associated
with relaxed system-wide constraints, monotonicity of the relaxed problem objective
function can be ensured by selectively relaxing system-wide constraints. After such
selective relaxation, objective functions of subproblems are monotonic and this mono-
tonicity is exploited to prove that by optimising dynamically linearised subproblems,
the ‘surrogate optimality condition’ is satisfied thereby leading to convergence. Since
resulting subproblems are linear and much smaller in size and complexity as compared
to the original problem, they can be efficiently solved using branch-and-cut. Moreover,
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since multipliers and dynamic linearisation affect subproblem objective functions only
without affecting subproblems constraints and without affecting subproblem convex
hulls when all system-wide coupling constraints are relaxed, the invariability of sub-
problem convex hulls can be exploited to improve computational efficiency as
explained in the previous paragraph. While subproblems convex hulls may no longer
be invariant when system-wide coupling constraints are relaxed selectively, conceptu-
ally, cuts generated by branch-and-cut based on subproblem constraints only can still
be reused to reduce the computational effort in subsequent iterations. Lastly, while con-
vergence does not require the knowledge of the optimal dual value, convergence may
require a large number of iterations, especially when solving nonlinear problems
because successive linearisations may involve many iterations. To improve conver-
gence, stepsize-updating parameters are adaptively adjusted and stepsizes are re-ini-
tialised. The selective relaxation of constraints and the novel stepsizing guidelines,
developed in Section 3, can also be used to efficiently solve linear MIP problems.

In Section 4, by considering a small nonlinear example, it is demonstrated that
novel stepsize-updating is more effective. By considering the unit commitment problem
with combined cycle units and transmission capacity constraints, it is demonstrated that
the new method can efficiently solve linear problems without full decomposition.
Lastly, by considering quadratic assignment problems, it is demonstrated that the new
method is efficient and scalable.

2. Synergistic integration of surrogate Lagrangian relaxation and branch-and-cut
for solving mixed-integer linear programming problems

2.1. Mixed-integer linear programming

Consider the following mixed-integer linear programming problem (Padberg, 2005):

min
x;y

cxþ dyf g; x 2 Z
n; y 2 R

p; x� 0; y� 0; (1)

s.t. Axþ Ey� b; (2)

where c, d and b are 1 × n, 1 × p and m × 1 vectors, ℤ and ℝ are sets of integers and
real numbers, and A and E are m × n and m × p matrices, respectively.

2.2. Surrogate Lagrangian relaxation (Bragin et al., 2015a)

In the method, after relaxing constraints (2) by introducing Lagrange multipliers λT =
(λ1,… , λm) ∈ ℝm, the Lagrangian function is formed:

Lðk; x; yÞ ¼ cxþ dyþ kT Axþ Ey� bð Þ: (3)

The relaxed problem, resulting from minimising the Lagrangian function (3), needs to
be fully optimised

min
x;y

Lðk; x; yÞ: (4)

To reduce computational requirements without fully optimising the relaxed problem (4)
while ensuring that ‘surrogate’ multiplier-updating directions form acute angles with
directions towards λ*, the method requires the satisfaction of the only simple ‘surrogate
optimality condition’ (Zhao, Luh, & Wang, 1999):

46 M.A. Bragin et al.
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~Lðkk ; xk ; ykÞ\~Lðkk ; xk�1; yk�1Þ: (5)

Here, eL is a surrogate dual value, which is a Lagrangian function (3) evaluated at a
solution (xk, yk):

~Lðk; xk ; ykÞ ¼ cxk þ dyk þ kT Axk þ Eyk � b
� �

: (6)

Within the method, Lagrange multipliers are updated as:

kkþ1 ¼ kk þ ck Axk þ Eyk � b
� �� �þ

; k ¼ 0; 1; . . .; (7)

where []+ is the projection onto the positive orthant that guarantees dual feasibility, and
ck are positive scalar stepsizes. To ensure convergence to λ*, stepsizes are updated as:

ck ¼ ak
ck�1 ~g xk�1; yk�1

� ��� ��
~g xk ; ykð Þk k ; 0\ak\1; k ¼ 1; 2; . . .; (8)

where ~g xk ; yk
� � ¼ Axk þ Eyk � b are surrogate subgradient directions. The surrogate

subgradient norm-squared can be represented as:

~g xk ; yk
� ��� ��2¼ max 0; ~g xk ; yk

� �� ��� ��2: (9)

Since surrogate Lagrangian relaxation does not require fully minimising the relaxed
problem (4), surrogate subgradient directions do not change drastically, and they are
generally smoother as compared to subgradient directions, thereby alleviating zigzag-
ging and reducing the number of iterations required for convergence.

It is possible that during the iterative process of the new method, surrogate subgra-
dient norms become zero. While zero-subgradients imply that the optimal solution is
found, zero-surrogate subgradients only imply that a feasible solution is found, and
generally, the algorithm needs to proceed. However, the stepsizing formula (8) involves
the division by zero. To resolve this issue, a small value is added to the surrogate sub-
gradient in the denominator, and the stepsizing formula is modified as:

ck ¼ ak
ck�1 ~g xk�1; yk�1

� ��� ��
~g xk ; ykð Þk k þ e

; 0\ak\1: (10)

Stepsizing formula (8) has been developed by Bragin et al., 2015a, and convergence
was proved. One possible way to select stepsize-updating parameters αk that guarantee
convergence is

ak ¼ 1� 1

Mkp
; p ¼ 1� 1

kr
; M � 1; 0\r\1; k ¼ 2; 3; . . . (11)

In the formula (11), parameters M and r control how fast αk approach 1 thereby affect-
ing how fast stepsizes approach zero, and ultimately controlling how fast multipliers
converge to λ*. On the one hand, when M and r are large, αk approaches 1 fast and
stepsizes approach zero slowly. As a result, stepsizes stay large thereby leading to oscil-
lation of multipliers in the neighbourhood of the optimum. On the other hand, when M
and r are small, stepsizes approach zero fast and become small early in the iterative
process, thereby also requiring many iterations to reach λ*.

Another important parameter within the method is the initial stepsize, which can be
initialised according to Bragin et al., 2015a as:
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c0 ¼ q̂� qðk0Þ
gðx0; y0Þk k2 ; (12)

where q̂ is an estimate of the optimal dual value, q(λ0) is the dual value obtained by
fully optimising the relaxed problem (4) and g(x0, y0) is the corresponding subgradient
direction. The difficulty of initialising stepsizes using (12) is that the estimate of the
optimal dual value may be too large or too small thereby leading to slow convergence.

2.3. Synergistic integration of surrogate Lagrangian relaxation and branch-and-cut
(Bragin et al., 2015c)

Frequently, mixed-integer linear programming problems model large systems that are
created by interconnecting smaller subsystems using system-wide coupling constraints.
Recently, to solve such problems by exploiting this particular structure, surrogate
Lagrangian relaxation has been synergistically integrated with branch-and-cut.

Assumption 2.1. Particular Problem Structure. Subsystems are modelled using discrete
decision variables xi 2 Z

ni and continuous decision variables yi 2 R
pi and are subject to

‘local’ subsystem constraints:

Aixi þ Eiyi � bi; i ¼ 1; . . .; I : (13)

Subsystems are coupled across the entire system through the use of system-wide cou-
pling constraints:

A0xþ E0y� b0; (14)

where b0 is an m0 × 1 vector, A0 and E0 are m0 × n and m0 × p matrices and x = (x1,… ,
xI), y = (y1,… ,yI). Constraints (14) can be written as m0 constraints that couple sub-
problem decision variables xi and yi in the following way:XI

i¼1

A0
j;ixi þ E0

j;iyi
� �

� b0j ; j 2 1; . . .;m0f g: (15)

Constraints (13)–(15) are essentially constraints (2) with

A ¼

: A0 :

A1 : 0

: : :

0 : AI

0BBB@
1CCCA;E ¼

: E0 :

E1 : 0

: : :

0 : EI

0BBB@
1CCCA; b ¼

b0

b1
:

bI

0BBB@
1CCCA;

A0 ¼
A0
1;1 : A0

1;I

: : :

A0
m0;1

: A0
m0;I

0B@
1CA;E0 ¼

E0
1;1 : E0

1;I

: : :

E0
m0;1

: E0
m0;I

0B@
1CA; b0 ¼

b01
:

b0m0

0B@
1CA:

(16)

Here, Ai and Ei are mi × ni and mi × pi matrices, A0
j;i and E0

j;i are 1 × ni and 1 × pi vectors,

b0 ¼ b01; . . .; b
0
m0

� �
is an m0 × 1 vector, and bi are mi × 1 column vectors such that

n1 + ⋯ + nI = n, p1 + ⋯ + pI = p and m0 + ⋯ + mI = m. □
Under Assumption 2.1, the class of optimisation problems (1)–(2) can be repre-

sented as smaller subsystems subject to subsystem constraints (13) and such subsystems
are coupled by system-wide coupling constrains (15). After relaxing system-wide
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coupling constraints (15), the relaxed problem can be decomposed into I subproblems,
and each subproblem i (= 1,… ,I) can be written as:

min
xi;yi

cixi þ diyif g þ
X
j

kjðA0
j;ixi þ E0

j;iyi � b0j Þ; s.t. ð15Þ; xi 2 Z
ni ; yi 2 R

pi ; xi � 0; yi � 0:

(17)

Each subproblem (17) is much smaller in size and complexity as compared to the origi-
nal problem (1)–(2), and each subproblem can be efficiently solved by branch-and-cut
without affecting the solution process of the entire problem. Moreover, the computa-
tional efficiency can be further improved by exploiting the fact that multipliers affect
subproblem objective functions without affecting subproblem constraints and without
affecting subproblem ‘convex hulls’. Since subproblems are much smaller in size as
compared to the original problem, subproblem convex hulls are much easier to obtain.
Once obtained, such invariant convex hulls can be reused in subsequent iterations and
solving subproblems becomes very easy by an appropriate LP solver. To obtain feasible
solutions to the original problem (1)–(2), subproblem solutions are adjusted to satisfy
violated constraints. The method has been used to solve the unit commitment problem
with combined cycle units without transmission constraints and the generalised assign-
ment problem, and great results have been obtained (Bragin et al., 2014, 2015b,
2015c).

3. An efficient approach for solving MIP problems under the monotonic
condition

In subsection 3.1, under the assumption of monotonicity of the objective function and
linearity of constraints, building upon the integration of surrogate Lagrangian relaxation
and branch-and-cut presented in Section 2, the novel methodology will be developed to
solve nonlinear MIP problems without fully exploiting separability and through the use
of dynamic linearisation in subsection 3.1. In subsection 3.2, guidelines for updating
stepsizes will be developed to achieve fast convergence.

3.1. An efficient approach for solving nonlinear MIP problems under the
monotonic condition

To solve nonlinear MIP problems under the monotonicity assumption of the objective
function and linearity of constraints, building upon the integration of surrogate
Lagrangian relaxation and branch-and-cut, the new method will be developed based on
the exploitation of problem structure after selective relaxation of system-wide con-
straints, and monotonicity of resulting subproblems through a dynamic linearisation
while efficiently coordinating subproblem solutions and guaranteeing convergence. The
monotonicity of the relaxed problem objective function can be ensured by selectively
relaxing system-wide constraints. After such selective relaxation, objective functions of
subproblems are monotonic and this monotonicity is exploited to prove that by optimis-
ing dynamically linearised subproblems, the ‘surrogate optimality condition’ is satisfied
thereby leading to convergence.

Consider the following MIP problem with a nonlinear objective function:

min
x;y

f ðx; yÞ; s.t. 13ð Þ; 15ð Þ; x 2 Z
n; y 2 R

p; x� 0; y� 0: (18)
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In order to exploit the particular problem structure mentioned in Assumption 2.1, the
objective function of (18) is assumed to be separable.

Assumption 3.1. Separability. Assume that the function f(x,y) can be represented as:

f ðx; yÞ ¼
XI
i¼1

fiðxi; yiÞ: (19)

Additionally, assume that each function fi(xi,yi) is monotonic and the monotonicity is
defined as follows:

Definition 3.2. Monotonicity. The function fi(xi,yi) is monotonically increasing in one of
its components xi,j if and only if

fiðxi;1; xi;2; . . .; xi; j�1; a; xi; jþ1; . . .; xi;ni ; yiÞ� fiðxi;1; xi;2; . . .; xi; j�1; a; xi; jþ1; . . .; xi;ni ; yiÞ;
for a � b;

(20a)

where yi ¼ ðyi;1; . . .; yi;piÞ. Likewise, function fi(xi,yi) is monotonically decreasing in one
of its components xi,j if and only if

fiðxi;1; xi;2; . . .; xi; j�1; a; xi; jþ1; . . .; xi;ni ; yiÞ� fiðxi;1; xi;2; . . .; xi; j�1; a; xi; jþ1; . . .; xi;ni ; yiÞ;
for a � b:

(20b)

Function fi(xi,yi) is monotonically increasing (decreasing) if it is increasing (decreasing)
in all of its variables. Monotonicity of the function fi(xi,yi) in yi,j can be defined in a
similar way. □

Generally, the class of problems (18) does not belong to the class of biconvex prob-
lems (Gorski, Pfeuffer, & Klamroth, 2007; Li, Wen, Zheng, & Zhao, 2015) since objec-
tive function in (18) it is not defined over a convex set because of the presence of
integer variables x. Also, the class of problems (18) is broader than the class of bilinear
problems (Al-Khayyal, 1990; Li, Wen, & Zhang, 2015) because function f(x,y) can
generally be any monotonic function.

To solve the problem (18), system-wide coupling constraints (15) are first relaxed,
and under Assumption 3.1, the relaxed problem becomes:

min
x;y

XI
i¼1

fiðxi; yiÞ þ
X
j

kj
XI
i¼1

A0
j;ixi þ E0

j;iyi
� �

� b0j

 !( )
; s.t.ð13Þ; xi 2 Z

ni ; yi 2 R
pi ; kj

2 R; xi � 0; yi � 0; kj � 0:

(21)

The relaxed problem is then decomposed into I subproblems, and each subproblem
i (= 1,… , I) is

min
xi;yi

fiðxi; yiÞ þ
X
j

kjðA0
j;ixi þ E0

j;iyiÞ
( )

; s:t:ð13Þ; xi 2 Z
ni ; yi 2 R

pi ; kj

2 R; xi � 0; yi � 0; kj � 0: (22)

Multipliers are updated to coordinate subproblem solutions after solving only one or
few such subproblems. However, there are difficulties that accompany this approach.
First, functions fi(xi,yi) are nonlinear, and as a result, subproblems (22) are nonlinear
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and they cannot be solved by branch-and-cut. Second, while functions fi(xi,yi) are
monotonic by assumption, the subproblem objective function in (22) is the sum of fi(xi,
yi) and

P
j
kjðA0

j;ixi þ E0
j;iyiÞ, and the subproblem objective function may not be mono-

tonic. Third, if the number of system-wide coupling constraints in (15) is large, a large
number of multipliers may be required in (21) thereby leading to slow convergence.
Relaxation of many constraints may also result in a loose lower bound provided by the
dual value, and this bound may not be tight enough to provide a good measure of solu-
tion quality. Additionally, searching for feasible solutions may be problematic.

3.1.1. Linearisation procedure

The first nonlinearity difficulty will be resolved by dynamically linearising fi(xi,yi) in
two steps as follows. In the first step, nonlinear terms that depend on several variables
will be linearised by selecting one variable as a decision variable and by fixing the
remaining variables at the previously obtained solution (xi

k−1, yi
k−1). The resulting

terms become functions of a single variable. In the second step, nonlinear terms of fi(xi,
yi) that depend on a single variable will then be linearised using linear terms of Taylor
series around the previously obtained solution (xi

k−1, yi
k−1). Decision variables are posi-

tive, and the linear part of Taylor series is an increasing function whenever the original
function is increasing. The resulting linear function fi(xi,yi) is guaranteed to be mono-
tonically increasing if the original function fi(xi,yi) is monotonically increasing. A simi-
lar argument holds for decreasing functions.

Since fi(xi,yi) is a function of several variables, additional iterations are required to
perform the first step of linearisation with respect to all the remaining variables. To
speed up the process, a function is constructed by taking the average value over all
possible linearised functions. For example, consider a nonlinear function f(x1,x2,x3) =
x1x2x3, x1, x2, x3 ∈ {0,1}. The linearised function then becomes:

f
�
x1; x2; x3ð Þ ¼ xk�1

1 xk�1
2 x3 þ xk�1

1 x2xk�1
3 þ x1xk�1

2 xk�1
3

3
: (23)

Since all system-wide coupling constraints are relaxed in (21) and the linearisation
described above only affects subproblem objective functions in (22) without affecting
subproblem constraints and without affecting subproblem convex hulls, the invariability
of subproblem convex hulls can also be exploited as explained in Section 2.

3.1.2. Selective relaxation of system-wide constraints

To resolve the second difficulty associated with the possible loss of monotonicity of
the subproblem objective function in (22), the following Proposition 3.3 provides a cri-
terion to select system-wide constraints in (15) to be relaxed.7

Proposition 3.3. Monotonicity of subproblem objective functions. Suppose fi(xi,yi) is an
increasing function and Ω ∈ {1,… , m0} is a subset of constraint indices j such that
terms A0

j;ixi þ E0
j;iyi in (22) are increasing functions. Then, after the relaxation of con-

straints from (15) such that j ∈ Ω, the subproblem objective function in (22) is mono-
tonically increasing. □

Proof: Since fi(xi,yi) is monotonically increasing, A0
j;ixi þ E0

j;iyi are increasing for j ∈ Ω,
and multipliers are non-negative, and the objective function (22) is monotonically
increasing. □
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In a similar fashion, it can be proved that when the function fi(xi,yi) is monotoni-
cally decreasing, the subproblem objective function in (22) will be monotonically
decreasing after relaxing constraints (15) such that A0

j;ixi þ E0
j;iyi are decreasing.

Consider a linearised subproblem i (= 1,… , I) that is created after relaxing system-
wide constraints with indices j ∈ Ω and after linearising the function fi(xi,yi) according
to the Linearisation Procedure8:

min
xi;yi

�fiðxi; yiÞ þ
X
j2X

kkj ðA0
j;ixi þ E0

j;iyiÞ
( )

; xi 2 Z
ni ; yi 2 R

pi ; kkj

2 R; xi � 0; yi � 0; kj � 0; (24)

s:t: Aixi þ Eiyi � bi; (25a)

XI
l¼1

A0
j;lxl þ E0

j;lyl
� �

� b0j ; j 62 X: (25b)

This linearised subproblem i is also minimised subject to the following linear version
of the surrogate optimality condition (5) for subproblems:

�fiðxki ; yki Þ þ
X
j2X

kkj ðA0
j;ix

k
i þ E0

j;iy
k
i Þ\�fiðxk�1

i ; yk�1
i Þ þ

X
j2X

kkj ðA0
j;ix

k�1
i þ E0

j;iy
k�1
i Þ: (26)

The convex hull corresponding to the linearised subproblem (24)–(25) obtained by
selective relaxation of system-wide constraints may no longer be invariant because sys-
tem-wide coupling constraints (25b) depend on decision variable values other than xi
and yi, and such decision variable values are changing throughout the iterative process.
Still, since linearised subproblem constraints (25a) do not change throughout the itera-
tive process, cuts generated by branch-and-cut based on constraints (25a) only can be
reused to reduce the computational effort in subsequent iterations and solving subprob-
lems with cuts retained from previous iterations will be easier than starting from ground
zero. However, since branch-and-cut generates cuts based on all constraints (25a) and
(25b), the reusing cuts may be difficult in practical implementations.

The monotonicity of subproblem objective functions will now be exploited to estab-
lish that under condition (26), the surrogate optimality condition for the relaxed prob-
lem (21) is satisfied in Proposition 3.4 and that the overall method converges in
Theorem 3.5 below.

Proposition 3.4. Satisfaction of the Surrogate Optimality Condition. Solutions ðxki ; yki Þ
to the linearised subproblem (24)–(25) that satisfy (26), also satisfy the surrogate opti-
mality condition for the relaxed problem:

f ðxk ; ykÞ þ
X
j2X

kkj
XI
i¼1

A0
j;ix

k
i þ E0

j;iy
k
i

� �
� b0j

 !
\f ðxk�1; yk�1Þ

þ
X
j2X

kkj
XI
i¼1

A0
j;ix

k�1
i þ E0

j;iy
k�1
i

� �
� b0j

 !
: (27)

Proof: Suppose that one subproblem i is solved at a time and condition (26) is satisfied
as a strict inequality.9 Since subproblems other than subproblem i are not solved, their
solutions ðxks ; yks Þ satisfy
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�fsðxks ; yks Þ þ
X
j2X

kkj ðA0
j;sx

k
s þ E0

j;sy
k
s Þ ¼ �fsðxk�1

s ; yk�1
s Þ þ

X
j2X

kkj ðA0
j;sx

k�1
s þ E0

j;sy
k�1
s Þ: (28)

Adding (26) and (28) for all s leads to the linearised surrogate optimality condition for
the relaxed problem:

�f ðxk ; ykÞ þ
X
j2X

kkj
XI
i¼1

A0
j;ix

k
i þ E0

j;iy
k
i

� �
� b0j

 !
\�f ðxk�1; yk�1Þ

þ
X
j2X

kkj
XI
i¼1

A0
j;ix

k�1
i þ E0

j;iy
k�1
i

� �
� b0j

 !
: (29)

From the Linearisation Procedure and Proposition 3.3, it follows that the objective
function of the relaxed problem (21) with j ∈ Ω and the linearised objective function

�f ðx; yÞ þP
j2X

kkj
PI
i¼1

A0
j;ixi þ E0

j;iyi
� �

� b0j

	 

are increasing functions. Therefore, solutions

(xk, yk) and (xk−1, yk−1) that satisfy (29) will also satisfy (27). Lastly, since f
�
x; yð Þ is

constructed by fixing variables at (xk−1, yk−1) and using the Taylor series expansion, the

following equality holds: f
�
xk�1; yk�1
� � ¼ f xk�1; yk�1

� �
. Therefore, right-hand sides of

(29) and (27) are equal, and the proposition is proved. □
In a similar fashion, it can be proved that the surrogate optimality condition holds

when the function fi(xi,yi) is monotonically decreasing.

Theorem 3.5. Convergence of the new method. Suppose that each function f
�
i xi; yið Þ,

i = 1,… , I is constructed from a monotonic function fi(xi,yi) using the Linearisation
Procedure, and the linear version of the surrogate optimality condition (26) for subprob-
lems is satisfied. If stepsizes ck satisfy (8) and stepsize-updating parameters αk satisfy
(9), then multipliers (7) converge to λ*. □

Proof: Per Proposition 3.4, the surrogate optimality condition is satisfied. As reviewed
in Section 2, since surrogate multiplier-updating directions satisfy the surrogate opti-
mality condition, stepsizes satisfy (8), and stepsize-updating parameters αk satisfy (9),
multipliers (7) converge to λ*. □

In the presence of equality constraints, multipliers corresponding to equality con-
straints are not restricted to be non-negative and the monotonicity of subproblem objec-
tive function may not be preserved. To ensure convergence of the method in the
presence of equality constraints, equality constraints that correspond to negative multi-
pliers are not relaxed. The idea can be operationalised fairly easily by first relaxing
constraints as discussed in Proposition 3.3, while projecting all the multipliers onto the
positive orthant as in (7). If during the iterative process some of the multipliers corre-
sponding to equality constraints become zero, the respective constraints are put back
into the formulation.

3.2. Adaptive adjustment and re-initialisation of stepsizes

As discussed before, the choice of stepsize-updating parameters M and r may lead to
the large number of iterations and slow convergence. In this subsection, the number of
iterations required for convergence will be reduced by adaptively adjusting stepsize-
updating parameters M and r and re-initialising stepsizes thereby making sure that
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stepsizes are large enough to reach the optimum quickly and by alleviating oscillations
of multipliers near the optimum.

3.2.1. Adaptive adjustment of stepsize-updating parameters

To improve convergence of the method developed in subsection 3.1, novel guidelines
for setting αk will now be developed. By considering non-increasing series {Mk} and
{rk} with large M0 and r0, stepsizes are large in the beginning of the iterative process
thereby allowing multipliers to reach the neighbourhood of the optimum relatively fast.
But, as parameters {Mk} and {rk} decrease, stepsize-updating parameters αk approach 1
slower. As a result, stepsizes approach zero faster, thereby alleviating oscillations near
the optimum as proved in the following Proposition 3.6.

Proposition 3.6: If stepsize-updating parameters αk are updated as follows:

ak ¼ 1� 1

Mkkp
; p ¼ 1� 1

krk
; Mk � 1; 0� rk � 1; k ¼ 2; 3; . . .; (30)

where Mk and rk are monotonically non-increasing such that:

Mk ! M � 1; rk ! r� d[ 0 (31)

then the multipliers converge to λ*.

Proof: Since parameters Mk and rk in (31) satisfy conditions in (11) for all possible val-
ues k, stepsizes with parameters αk defined in (30) ensure convergence to λ*. □

3.2.2. Stepsize re-initialisation

In practical implementations, a feasible cost10 can be used as an estimate of the optimal
dual value to initialise stepsizes in (12). However, when an initial estimate is too large,
stepsizes may stay large thereby leading to oscillations of multipliers near the optimum.
To alleviate this issue, stepsizes are to be re-initialised during the iterative process. For
example, if at iteration k the following condition holds

ck [
q̂k � qðkkÞ
gðxk ; ykÞk k2 ; (32)

then stepsizes need to be reset as:

ck ¼ q̂k � qðkkÞ
gðxk ; ykÞk k2 : (33)

This re-initialisation will decrease stepsizes thereby alleviating the oscillations of multi-
pliers near the optimum. Stepsizes may also become too small during the process such
that is the following condition holds

ck\\
q̂k � qðkkÞ
gðxk ; ykÞk k2 : (34)

In this case, stepsizes are also re-initialised per (33).
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Proposition 3.7: The method developed in subsection 3.1 will converge if stepsizes are
re-initialised per (33) finite number of times.

Proof: Since the number of re-initialisations is finite, the analysis of convergence after
the last re-initialisation follows the same logic as in Proposition 3.6.

Since the method presented in Section 2 uses the same stepsizing formula as the
method developed in subsection 3.1, the results obtained in this subsection 3.2 also
hold for the method presented in Section 2.

4. Numerical section

The new method is implemented using CPLEX 12.6 on a laptop Intel® CoreTM i7 CPU
Q720 @ 1.60 GHz and 4.00 GB of RAM. To illustrate convergence under Propositions
3.6–3.7, a small nonlinear integer example is considered in Example 1. To illustrate the
efficiency of the method for solving mixed-integer linear programming problems with-
out fully exploiting separability, the unit commitment problem with combined cycle
units and transmission capacity constraints is considered in Example 2. To illustrate the
efficiency and the scalability of the method for solving integer nonlinear programming
problems under the monotonic condition, quadratic assignment problem is considered
in Example 3.

Example 1. A Nonlinear integer problem. The purpose of this example is to demon-
strate convergence with stepsize-setting parameters that satisfy Proposition 3.6. To
achieve this goal, the following small and relatively simple integer nonlinear program-
ming example subject to linear constraints with known optimal value is considered:

min
x1;x2;x3;x4;x5;x6f g2Zþ[ 0f g

x21 þ x22 þ x23 þ x24 þ x25 þ x26
� �

(35)

s:t: 48� x1 þ 0:2x2 � x3 þ 0:2x4 � x5 þ 0:2x6 � 0;

250� 5x1 þ x2 � 5x3 þ x4 � 5x5 þ x6 � 0: ð36Þ
After relaxing constraints (36), the relaxed problem can be decomposed into six
subproblems:

min
xif g2Zþ[ 0f g; i¼1;...;6

Lðx1; x2; x3; x4; x5; x6; k1; k2Þ
¼ min

xif g2Zþ[ 0f g; i¼1;...;6
fðx21 � k1x1 � 5k2x1Þ þ ðx22 þ 0:2k1x2 þ k2x2Þþ

ðx23 � k1x3 � 5k2x3Þ þ ðx24 þ 0:2k1x4 þ k2x4Þ þ ðx25 � k1x5 � 5k2x5Þ
þðx26 þ 0:2k1x6 þ k2x6Þ þ 48k1 þ 250k2g:

(37)

Since the problem is small, optimal multipliers (λ1, λ2)
* = (9, 4.8)11 can be easily com-

puted, and efficiency will be assessed by calculating distances from multipliers to (λ1,
λ2)

* at every iteration.
Following (12), stepsizes are initialised as:

c0 ¼ 1

n

q̂� q k0
� �

gðx0Þk k ; (38)

where n is the number of subproblems (n = 6). An estimate of the optimal dual value q̂
is chosen to be a feasible cost 867 of (35)–(36) corresponding to a feasible solution
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(17, 0, 17, 0, 17, 0). Multipliers will be updated using the formula (7), stepsizes will
be updated using the formula (8), and stepsize-setting parameters will be updated
following Proposition 3.6.

Results for {Mk} and {rk} satisfying Proposition 3.6. To illustrate convergence under
Proposition 3.6, few particular sequences {Mk} and {rk} will be considered. For exam-
ple, consider sequences with initial M0 = 50, r0 = 0.3. In the first sequence, Mk and rk
are reduced by a factor of 2 at iterations 50 and 100, and in the second sequence, Mk

and rk are reduced by a factor of 1.5 at iterations 25, 50 and 75. The results are shown
in Figure 1.

In the sequences of {Mk} and {rk} mentioned above, the initial parameters M0 = 50
and r0 = 0.3 are chosen to be large thereby allowing stepsizes to stay large in the begin-
ning of the iterative process and making significant progress towards the optimum. As
Mk and rk decrease, stepsizes approach zero faster thereby leading to faster convergence.
Other possible sequences {Mk} and {rk} that satisfy Proposition 3.6 are (a)
Mk ¼ 1000

k þ 1; rk ¼ 0:2; (b) Mk ¼ 200; rk ¼ 1
k þ 0:01; (c) Mk ¼ 2000ffiffiffi

k
p þ1; rk ¼ 1ffiffi

k
p þ 0:01

Figure 1. Results for {Mk} and {rk} satisfying Proposition 3.6.
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Figure 2. Convergence with and without stepsize re-initialisation.
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The results will be compared with the results obtained using constant parameters M
and r that satisfy (11). For comparison, several constant parameters M and r were cho-
sen for simulations, but for the sake of brevity, results obtained using only best combi-
nation of parameters M and r (M = 40, r = 0.075) will be compared with the results
obtained using sequences of {Mk} and {rk} shown before. The comparison results are
demonstrated in Figure 1 (right). Convergence can also be sped up by re-initialising
stepsizes during convergence as will be demonstrated ahead.

Results with Stepsize Re-initialisation. The stepsize is initialised according to (12) with
q̂ = 867 as explained before. At iteration 30, a new feasible cost 846 is obtained and is
used to re-initialise stepsizes according to (33). The results shown in Figure 2 (left)
indicate that multipliers approach the optimum faster when re-initialised during the iter-
ative process. To illustrate why convergence is improved when stepsizes are re-ini-
tialised (reduced) during the iterative process, Figure 2 (right) also shows trajectories of
multipliers with and without of re-initialisations of stepsizes.

To demonstrate behaviour of multipliers near the optimum, the boxed-in portion of
the Figure 2 (right) is zoomed in and is shown in Figure 3. As demonstrated in Figure 3
(left), without the re-initialisation, stepsizes remain large in the neighbourhood of the
optimum (9, 4.8), which results in oscillations. In contrast, when stepsizes are re-ini-
tialised, multipliers approach optimum in a much smoother fashion as shown in Figure 3
(right).

Example 2. Unit Commitment and Economic Dispatch with Combined Cycle Units and
Transmission Capacity Constraints. In this example, to demonstrate efficiency of the
new method, the Unit Commitment and Economic Dispatch (UCED) problem with
combined cycle units (Alemany et al., 2013; Anders, 2005) and transmission capacity
constraints will be considered. The UCED problem seeks to minimise the total cost
consisting of the total generation and the total start-up costs by determining which gen-
erators to commit and deciding their generation levels that satisfy generator capacity,
ramp-rate and minimum up- and down-time constraints (Guan et al., 1992, 1994) and
following transitions among states of combined cycle units while meeting the demand
PD
i at each node i and satisfying transmission capacity fl,max in each transmission line l

(Bragin et al., 2014, 2015b). The constraints are formulated as follows:

3

4
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7.5 8 8.5 9
3
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7

8
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Figure 3. Trajectories of multipliers without re-initialisation (left) and trajectories of multipliers
with re-initialisation (right). The optimum is shown by a star.
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Generation Capacity Constraints: Status of each bid12 mi (= 1,… , Mi) at node i
(= 1, … , I) indexed by (i,mi) is modelled by binary decision variables xði;miÞðtÞ:
xði;miÞðtÞ = 1 indicates that the bid was selected, and xði;miÞðtÞ = 0 otherwise. If the bid is
selected, energy pði;miÞðtÞ output should satisfy minimum/maximum generation levels:

x i;mið ÞðtÞp i;mið Þmin � p i;mið ÞðtÞ� x i;mið ÞðtÞp i;mið Þmax: (39)

The start-up cost S i;mið ÞðtÞ is incurred if and only if the unit i has been turned an ‘on’
from an ‘off’ state at hour t

S i;mið ÞðtÞ� S i;mið Þ x i;mið ÞðtÞ � x i;mið Þðt � 1Þ
� �

: (40)

Ramp-rate constraints ensure that the increase/decrease in the output of a unit does not
exceed a pre-specified ramp-rate within one hour.

Minimum up- and down-time constraints ensure that a unit must be kept online/offline
for a pre-specified number of hours. Formulation of ramp-rate and minimum up- and
down-time constraints can be found in Guan et al., 1992 and Rajan & Takriti, 2005.

Transitions within Combined Cycle Units: Combined cycle units can operate at multiple
configurations of combustion turbines (CTs) and steam turbines (STs). However, transi-
tions among configurations may be constrained. For example, steam turbines cannot be
turned on if there is not enough heat from combustion turbines. Transition rules (Ale-
many et al., 2013; Anders, 2005) for a configuration with two combustion turbines and
one steam turbine (2CT + 1ST) and their linear formulation can be found in (Bragin
et al., 2014, 2015b).

Demand Constraints: Committed generators need to satisfy energy nodal load levels
Pi

D(t) either locally or by transmitting power through transmission lines. The total
power generated should be equal to the system demand:XI

i¼1

XMi

m¼1

p i;mð ÞðtÞ ¼
XI
i¼1

PD
i ðtÞ: (41)

Power Flow Constraints: The power flow f b1;b2ð Þ tð Þ in a line that connects nodes b1 and
b2 can be expressed as a linear combination of net nodal injections of energy (Bragin
et al., 2014):

f b1;b2ð Þ tð Þ ¼
XI
i¼1

aib1;b2ð Þ �
XMi

m¼1

p i;mð Þ tð Þ � PD
i tð Þ

 !
: (42)

Power flows in a line are essentially a linear combination of nodal injections with
weights being al

i, referred to as ‘shift factors’.

Transmission Capacity Constraints: Power flows in any line cannot exceed the trans-
mission capacity flmax which for simplicity is set to be the same for each direction

�f b1;b2ð Þmax � f b1;b2ð ÞðtÞ� f b1;b2ð Þmax: (43)

Objective Function. The objective of the UCED problem with conventional and
combined cycle unit is to minimise the cost consisting on the total bid and start-up
costs:
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XI
i¼1

XMi

m¼1

XT
t¼1

c i;mð Þ p i;mð Þ tð Þ; t
� �þXT

t¼1

S i;mð Þ

 !
(44)

while satisfying all constraints mentioned before.

Testing IEEE 30-bus system (Zhang Song Hu & Yao, 2011). To test the new method,
consider the IEEE 30-bus system that consists of 30 buses (I = 30) and 41 transmission
lines (L = 41). The original data are modified so that each bus numbered 1 through 10
has exactly one combined cycle unit (Mi = 1), and each of the buses 11 and 12 has
exactly one conventional generator.

To solve the problem, only nodal demand constraints (41) are relaxed and the
relaxed problem becomes:

XI
i¼1

XMi

m¼1

XT
t¼1

c i;mð Þ p i;mð Þ tð Þ; t
� �þXT

t¼1

S i;mð Þu i;mð Þ tð Þ
 !

þ
XT
t¼1

kðtÞ
XI
i¼1

XMi

m¼1

p i;mð ÞðtÞ �
XI
i¼1

PD
i ðtÞ

 !
; (45)

subject to all constraints mentioned before with the exception of nodal demand con-
straints (41).

A subproblem at iteration k can be written as:XT
t¼1

c i;mið Þ p i;mið Þ tð Þ; t
� �

þ
XT
t¼1

S i;mið Þu i;mið Þ tð Þ þ
XT
t¼1

kkðtÞ p i;mið ÞðtÞ
� �

; (46)

subject to
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Figure 4. Comparison of the new method and branch-and-cut for the unit commitment problem.
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� f b1;b2ð Þmax �
XI
j ¼ 1

j 6¼ i

ajb1;b2ð Þ �
XMj

m¼1

pk�1
j;mð Þ tð Þ � PD

j tð Þ
 !

þ aib1;b2ð Þ �
XMi

m¼1

p i;mð Þ tð Þ � PD
i tð Þ

 !
� f b1;b2ð Þmax;

(47)

and subject to generation capacity constraints, ramp-rate constraints, minimum up- and
down-time constraints, and transitions among combined cycle states. Performance of
the new method is compared to that of branch-and-cut, and the results are demonstrated
in Figure 4.

Figure 4 shows that without full decomposition, the new method obtains a good
feasible solution within 10 min of clock time. Upon comparison with the integration of
surrogate Lagrangian relaxation and branch-and-cut with full relaxation, the new
method converges faster judging by the quality of the lower bound, and the method
obtains better feasible solutions. Performance of the method is also much better as
compared to that of standard branch-and-cut.

As mentioned in subsection 3.1, when all system-wide coupling constraints are
relaxed, subproblem convex hull invariance can be exploited. Without relaxing all sys-
tem-wide constraints, subproblem convex hulls may no longer be invariant. Still, cuts
generated by branch-and-cut that are based on subproblem constraints (with the excep-
tion of (47)) can be saved and reused in subsequent iterations to further reduce the
computational effort. Without relaxing all system-wide constraints, however, reusing
cuts may be difficult in practical implementations as discussed in subsection 3.1.

Example 3. Quadratic Assignment Problems. The problem was first formulated in 1957
by Koopmans and Beckmann (1957), and since then, the problem has been applied to
many fields (Burkard & Offermann, 1977; Dickey & Hopkins, 1972; Elshafei, 1977;
Geoffrion & Graves, 1976; Krarup & Pruzan, 1978; Miranda et al., 2005). The problem
can be formulated as an integer nonlinear programming problem:

min
xi; j;xh;l

Xn
i; j¼1

Xn
h;l¼1

di;hfj;lxi; jxh;l; xi; j 2 0; 1f g; di;h � 0; fj;l � 0; (48)

s:t:
Xn
i¼1

xi; j ¼ 1; j ¼ 1; . . .; n; (49)

Xn
j¼1

xi; j ¼ 1; i ¼ 1; . . .; n: (50)

In terms of the electronic board design problem (Miranda et al., 2005), the Quadratic
Assignment problem can be explained as follows. Given n electronic components and
locations, di,h is the distance between location i and location h, fj,l are levels of interac-
tivity and energy/data flow between component j and component l. Binary decision
variables xi,j corresponds to component i being placed in location j iff xi,j = 1. Assign-
ment constraints (49) and (50) ensure that only one component can be assigned to a
specific location. The problem falls in the category of integer monotonic programming
problems since the objective function is monotonically increasing and constraints are
linear.
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To demonstrate the new method, consider a quadratic assignment problem instance
with n = 26 (Burkard & Offermann, 1977). To solve the problem, the dynamic lineari-
sation along the lines developed in subsection 3.1 will be used. Consider the following
linearisation of the objective function:

�f x; xk�1
� � ¼ Xn

i; j¼1

Xn
h;l¼1

di;hfj;l xi; jx
k�1
h;l þ xk�1

i; j xh;l � xk�1
i; j x

k�1
h;l

� �
: (51)

Constraints (49) can be viewed as system-wide coupling constraints, and constraints
(50) can be viewed as subproblem constraints. The relaxed problem can be constructed
by relaxing two constraints from (49), and the linearised relaxed problem becomes:

min
xi; j;xh;l

Xn
i; j¼1

Xn
h;l¼1

di;hfj;l xi; jx
k�1
h;l þ xk�1

i; j xh;l � xk�1
i; j x

k�1
h;l

� �
þ
X2
j¼1

kj
Xn
i¼1

xi; j � 1

 !( )
;

xi; j 2 0; 1f g ð52Þ

s:t:
Xn
i¼3

xi; j ¼ 1; j ¼ 1; . . .; n; (53)

Xn
j¼1

xi; j ¼ 1; i ¼ 1; . . .; n; (54)

and the linearised surrogate optimality condition isXn
i; j¼1

Xn
h;l¼1

di;hfj;l xk
i; j
xk�1
h;l þ xk�1

i; j x
k
h;l
� xk�1

i; j x
k�1
h;l

� �
þ
X2
j¼1

kj
Xn
i¼1

xk
i; j
� 1

 !
\
Xn
i; j¼1

Xn
h;l¼1

di;hfj;lx
k�1
i; j x

k�1
h;l þ

X2
j¼1

kj
Xn
i¼1

xk�1
i; j

� 1

 !
: (55)

A ‘subproblem’ m can be written as

min
xi; j;xh;l

Xm
i¼m

Xn
j¼1

Xn
h;l¼1

di;hfj;lxi; jx
k�1
h;l þ

Xn
i; j¼1

Xm
h¼m

Xn
l¼1

di;hfj;lx
k�1
i; j xh;l

(

�
Xm
i;h¼m

Xn
j¼1

Xn
l¼1

di;hfj;lx
k�1
i; j x

k�1
h;l þ

X2
j¼1

kj
Xm
m¼1

xi; j

)
xi; j 2 0; 1f g;

(56)

s:t:
Xn
i¼3

xi; j ¼ 1; j ¼ 1; . . .; n; (57)

Xn
j¼1

xi; j ¼ 1; i ¼ m: (58)

In this example, 10 linearised ‘subproblems’ are grouped together and the resulting
objective function is
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min
xi; j;xh;l

Xmþ9

i¼m

Xn
j¼1

Xn
h;l¼1

di;hfj;lxi; jx
k�1
h;l þ

Xn
i; j¼1

Xmþ9

h¼m

Xn
l¼1

di;hfj;lx
k�1
i; j xh;l

(

�
Xmþ9

i;h¼m

Xn
j¼1

Xn
l¼1

di;hfj;lx
k�1
i; j x

k�1
h;l þ

X2
j¼1

kj
Xmþ9

m¼1

xi; j

)
xi; j 2 0; 1f g:

(59)

Even for n = 26, the number of terms in the objective function (59) is fairly large, and
this objective function may not be handled efficiently in practical implementations. To
deal with this issue, the number of terms is reduced by removing terms that involve
decision variable values that are zero. Moreover, regrouping terms in a way that the
number of outer summations is small will also reduce the computational effort. Lastly,
the third term in (59) does not contain decision variables, and it can be removed as it
will not affect the solution process. The resulting linearised ‘subproblems’ can be writ-
ten as:

min
xi; j

Xmþ9

i¼m

Xn
j; h; l ¼ 1
xk�1
h;l 6¼ 0

di;hfj;l þ dh;ifl; j
� �

xi; jx
k�1
h;l þ

X2
j¼1

kj
Xmþ9

m¼1

xi; j

8>>>>><>>>>>:

9>>>>>=>>>>>;
; xi; j 2 0; 1f g; (60)

s:t:
Xn
i¼3

xi; j ¼ 1; j ¼ 1; . . .; n; (61)

Xn
j¼1

xi; j ¼ 1; i ¼ m; . . .;mþ 9: (62)
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Figure 5. Solution profile for the Quadratic Assignment Problem instance Bur26a (Burkard &
Offermann, 1977). Feasible costs are marked by the cross ×.
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The parameter m is chosen sequentially starting from m = 1 and increasing in incre-
ments of 2 until the value m = 17 is reached, after which the count starts from m = 1
again.

Each subproblem (60)–(62) is now easy to solve. Moreover, according to the
numerical experience, multipliers that correspond to the relaxed constraints were posi-
tive throughout the entire iterative process and the monotonicity of subproblem objec-
tive functions was preserved.

Figure 5 shows that the new method obtains a good feasible solution within a few
minutes. Moreover, if only CPU time spent solving subproblems is counted, the new
method obtains a feasible solution with 0.38% gap within under 10 seconds thereby
indicating that the dynamic linearisation is efficient. To test the scalability of the new
method, consider a problem instance with n = 128. Figure 6 demonstrates that the new
method is scalable and capable of efficiently solving Quadratic Assignment problems
of large sizes (n = 128).

5. Conclusion

In this study, building upon the recently developed integration of surrogate Lagrangian
relaxation and branch-and-cut, a new method is developed to solve difficult and nonlin-
ear MIP problems under the condition of monotonicity of the objective function and
linearity of constraints. The method exploits problem structure after selective relaxation
of system-wide constraints, monotonicity of resulting subproblems through a dynamic
linearisation while efficiently coordinating subproblem solutions and guaranteeing con-
vergence. When all system-wide constraints are relaxed, subproblem convex hull invari-
ance of linearised subproblems can be exploited to improve efficiency of the method.
Through novel guidelines for selecting stepsize-updating parameters, fast convergence
is achieved. The idea of the new method is generic and can be applied for solving inte-
ger and MIP problems under an assumption of monotonicity of objective functions and
linearity of constraints. The method opens up new directions for solving other difficult
nonlinear integer and MIP problems.
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Figure 6. Solution profile for the Quadratic Assignment Problem instance Esc128 (Eschermann
& Wunderlich, 1990). Feasible costs are marked by the cross ×.
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Notes
1. The analysis of integer programming problems is similar to the analysis of mixed-integer

programming problems.
2. Monotonic objective functions can be increasing/decreasing linear functions or increasing/

decreasing nonlinear functions.
3. As compared to conventional generators, combined cycle units are more efficient because

heat from combustion turbines is not wasted into the atmosphere but is used to generate
steam in steam turbines to generate more electricity.

4. For example, steam turbines cannot be turned on if there is not enough heat from combus-
tion turbines.

5. One of the recent applications of the problem is the electronic board design problem
(Miranda, Luna, Mateus, & Ferreira, 2005). In a circuit board, a number of electronic com-
ponents need to be placed to a number of locations. To avoid signal delays, the distance
among components with greater levels of interactivity and energy/data flow is minimised.

6. Quadratic assignment problems are considered to be one of the most difficult problems, and
instances with the size larger than 30 cannot be solved ‘in reasonable CPU time’ (Hahn,
Zhu, Guignard, Hightower, & Saltzman, 2012).

7. The selective relaxation of system-wide coupling constraints also alleviates the third diffi-
culty associated with relaxation of many system-wide coupling constraints (15). Typically,
the choice of constraints to be relaxed depends on the nature of the problem.

8. When solving subproblem i, all other decision variables xl; l 6¼ i in constraints (25b) are
fixed at xk�1

l .
9. Same argument holds if several linearised subproblems (24)–(25) are solved at a time.
10. Feasible cost can be obtained by adjusting subproblem solutions to satisfy violated con-

straints as mentioned in Section 2.
11. These values are obtained using surrogate Lagrangian relaxation and running the algorithm

for sufficiently many iterations.
12. Each bid corresponds to either a conventional unit, or to a combustion/steam turbine gener-

ator that comprises a combined cycle unit.
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