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Abstract Studies have shown that the surrogate subgradient method, to optimize
non-smooth dual functions within the Lagrangian relaxation framework, can lead to
significant computational improvements as compared to the subgradient method. The
key idea is to obtain surrogate subgradient directions that form acute angles toward
the optimal multipliers without fully minimizing the relaxed problem. The major dif-
ficulty of the method is its convergence, since the convergence proof and the practical
implementation require the knowledge of the optimal dual value. Adaptive estima-
tions of the optimal dual value may lead to divergence and the loss of the lower bound
property for surrogate dual values. The main contribution of this paper is on the devel-
opment of the surrogate Lagrangian relaxation method and its convergence proof to
the optimal multipliers, without the knowledge of the optimal dual value and with-
out fully optimizing the relaxed problem. Moreover, for practical implementations,
a stepsizing formula that guarantees convergence without requiring the optimal dual
value has been constructively developed. The key idea is to select stepsizes in a way
that distances between Lagrange multipliers at consecutive iterations decrease, and as
a result, Lagrange multipliers converge to a unique limit. At the same time, stepsizes
are kept sufficiently large so that the algorithm does not terminate prematurely. At
convergence, the lower-bound property of the surrogate dual is guaranteed. Testing
results demonstrate that non-smooth dual functions can be efficiently optimized, and
the new method leads to faster convergence as compared to other methods available

Communicated by Fabián Flores-Bazàn.

M. A. Bragin (B)· P. B. Luh
Department of Electrical and Computer Engineering, University of Connecticut,
Storrs, CT 06269-2157, USA
e-mail: mab08017@engr.uconn.edu

J. H. Yan · N. Yu · G. A. Stern
Southern California Edison, Rosemead, CA 91770, USA

123

Author's personal copy



174 J Optim Theory Appl (2015) 164:173–201

for optimizing non-smooth dual functions, namely, the simple subgradient method,
the subgradient-level method, and the incremental subgradient method.

Keywords Non-smooth optimization · Subgradient methods · Surrogate subgradient
method · Lagrangian relaxation · Mixed-integer programming
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1 Introduction

When solving complicated mixed-integer optimization problems, the effort needed
to obtain an optimal solution increases dramatically as the problem size increases.
Therefore, the goal for practical applications is often to obtain a near-optimal solution
with quantifiable quality in a computationally efficient manner. Lagrangian relaxation
has successfully achieved this goal by exploiting separability of a problem. In the
method, the relaxed problem is fully optimized, and the dual function is obtained.
Dual functions are always concave, and the feasible set of dual solutions is always
convex regardless of the characteristics of the original problem such as convexity.
To optimize non-smooth concave dual functions, Lagrange multipliers are adjusted
based on appropriately defined stepsizes and by using subgradient directions [1–13]
or surrogate subgradient directions [14–20]. At convergence of multipliers, heuristics
are typically used to obtain feasible solutions.1

The subgradient method has been extensively studied starting with the pioneering
works of Ermoliev [1], Polyak [2,3], and Shor [4,5]. The general convergence has been
established in [1] and [2]. To ensure convergence with a geometric rate, convergence
was proved by requiring the optimal dual value [3]. In practical implementations,
adaptive rules to adjust estimates of the optimal dual value were first developed in
[3], and such rules have been improved in [7–9,11,21] to guarantee convergence to
the optimum. Difficulties associated with the unavailability of the optimal dual value
have been overcome owing to the fact that subgradients form acute angles with direc-
tions toward the optimal multipliers and owing to the convexity of the dual function.
Therefore, for properly chosen stepsizes, multipliers move closer to the optimal mul-
tipliers. For example, in the subgradient-level method [7], stepsizes are set by using
estimates of the optimal dual value based on the highest dual value obtained so far,
and such estimates are further adjusted when significant oscillations of multipliers
are detected. However, subgradient methods require the relaxed problem to be fully
optimized, which can be difficult when the relaxed problem is non-separable or NP-
hard. Moreover, convergence can be slow because multipliers often zigzag across the
ridges of the dual function, and the zigzagging is especially noticeable when ridges are
sharp. While incremental subgradient methods [8] reduce computational requirements
by optimizing one subproblem at a time and converge without requiring the optimal

1 While Augmented Lagrangian relaxation has been a powerful method and can alleviate zigzagging,
thereby reducing computational requirements, it is generally not used to optimize dual functions. Further-
more, the extra quadratic term makes the problem non-separable. Although methods were developed to
overcome the resulting non-separability issue, they were not very effective.
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dual value, these methods require separability of the problem and cannot be used to
solve non-separable problems, or when subproblems are NP-hard.

The surrogate subgradient method, developed within the Lagrangian relaxation
framework, is a variation of the subgradient method that seeks to reduce computa-
tional requirements and to obtain surrogate subgradient directions that form acute
angles with directions toward to the optimal multipliers [15–20]. Without requiring
the relaxed problem to be fully optimized, surrogate subgradient directions do not
change drastically, thereby alleviating the zigzagging of multipliers and reducing the
number of iterations required for convergence. The major difficulty of the method is its
convergence, since the convergence proof and the practical implementation require the
knowledge of the optimal dual value, which is unavailable in practice. In the method,
since the relaxed problem is not fully optimized, surrogate dual values are no longer
on but are above the dual surface. As a result, surrogate subgradient directions may
not form acute angles with directions toward the optimal multipliers, and divergence
may occur. In addition, the lower bound property of surrogate dual values may be lost.
While such difficulties can sometimes be overcome by occasionally obtaining subgra-
dients during the convergence process, the computational effort can still be prohibitive
when the relaxed problem is non-separable or NP-hard.

In this paper, surrogate Lagrangian relaxation with novel conditions on stepsizes
is developed, and convergence of the method is proved without requiring the optimal
dual value and without fully optimizing the relaxed problem in Sect. 2. The idea is to
select stepsizes in a way that distances between Lagrange multipliers at consecutive
iterations decrease, and as a result, multipliers converge to a unique limit. At the same
time, stepsizes are kept sufficiently large so that the algorithm does not terminate pre-
maturely. At convergence, a surrogate dual value provides a lower bound to the primal
cost. Moreover, a particular stepsizing formula that satisfies the set of conditions has
been obtained. Convergence of the interleaved method [14], in which one subproblem
is solved at a time to update multipliers, has also been proved. Under additional assump-
tions used in subgradient methods [8], the convergence rate of the new method is linear.

Section 3 presents testing results for a small nonlinear integer optimization prob-
lem, large generalized assignment problems, and quadratic assignment problems. For
the small problem, the new method is compared with the subgradient method to
demonstrate that the zigzagging is alleviated, and calculations of surrogate subgra-
dient directions require significantly lower computational effort. The new method is
then compared with the methods available for non-smooth optimization such as the
simple subgradient method, the subgradient-level method and the incremental sub-
gradient method when solving generalized assignment problems with separable dual
problems, and quadratic assignment problems with non-separable dual problems.

2 Convergence of the Surrogate Lagrangian Relaxation Method

This section is on the development of the novel surrogate Lagrangian relaxation method
and its convergence proof without requiring the optimal dual value. In Sect. 2.1, a
generic mixed-integer problem formulation and the Lagrangian relaxation framework
are presented. To maximize non-smooth dual functions, subgradient directions and
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stepsizes requiring the optimal dual value are frequently used [22]. To find multiplier-
updating directions that form acute angles with directions toward the optimal multipli-
ers without fully minimizing the relaxed problem, the Lagrangian relaxation, and surro-
gate subgradient method [15] is presented next. In Sect. 2.2, the surrogate Lagrangian
relaxation method is developed, and convergence of the method is proved without
requiring the optimal dual value. Convergence rate of the method is discussed in Sect.
2.3. Section 2.4 discusses practical implementation aspects of the algorithm such as a
constructive stepsize-setting procedure.

2.1 Mixed-Integer Programming and Lagrangian Relaxation

Consider a mixed-integer problem formulation:

min
x

f (x), subject to g(x) ≤ 0, x ∈ X, (1)

where x = (y, z), y ∈ R
Nr , z ∈ Z

Nz , and X ⊆ R
Nr × Z

Nz , with R denoting the set
of real numbers, Z denoting the set of integers, f : X → R and g : X → R

m are
continuous and differentiable with respect to y. In addition, g(x) satisfy the following
assumptions:

Assumption 2.1 There exists a scalar M such that

‖g(x)‖ < M < ∞,∀x ∈ X. (2)

Assumption 2.2 Regularity Condition Gradient vectors of active inequality con-
straints with respect to y are linearly independent at a constrained local minimum
x∗ = (y∗, z∗) of f (x). 
�

The regularity Assumption 2.2 is needed only in the continuous subspace R
Nr

to rule out possible irregularities, such as linear dependence of gradients of active
constraints. In the discrete subspace Z

Nz , regularity conditions are not needed [23].
When solving discrete optimization problems, the Lagrangian relaxation method

has been used [15,22] and shown to be especially powerful for solving separable
programming problems. In the method, the constraints of (1) are relaxed, and the
Lagrangian function is formed by introducing a vector of Lagrange multipliers λT =
(λ1, . . . , λm) ∈ R

m :

L(λ, x) := f (x) + λT g(x). (3)

The dual function, resulting from the minimization of the Lagrangian function (3),
becomes

q(λ) := min
x∈X

L(λ, x), (4)
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and the dual problem is to maximize the concave non-smooth dual function [22]:

max
λ

q(λ) , s.t. λ ∈ R
m, λ ≥ 0. (5)

When the original problem is integer or mixed-integer linear, the dual function is
polyhedral concave and non-smooth [15]. In the subgradient method, to maximize the
dual function, multipliers are updated according to:

λk+1 = [λk + ck g(xk)]+, k = 0, 1, . . . , (6)

where []+ denotes projection onto the positive orthant, g(xk) is the subgradient of the
dual function q(λ) at λk , and ck is a positive scalar stepsize. If equality constraints
h(x) = 0 are present in the formulation, multipliers are updated according to (6)
without projecting onto the positive orthant.

Since q(λ) is convex, dual values are not greater than the optimal dual value q∗ :=
q(λ∗)

q(λk) ≤ q∗. (7)

Moreover, by the definition of subgradients, the following relationship holds:

q∗ − q(λk) ≤ (λ∗ − λk)T g(xk). (8)

Both sides of the inequality (8) are non-negative owing to the inequality (7). There-
fore, subgradient directions from acute angles with directions toward λ∗, and distances
between the current multipliers and the optimum λ∗ can be decreased under the fol-
lowing condition on stepsizes [22]:

0 < ck <
2(q∗ − q(λk))

∥
∥g(xk)

∥
∥

2 , k = 0, 1, . . . . (9)

While q∗ is unknown in practice, significant research has been done to guarantee
convergence to λ∗ by adaptively estimating q∗. For example, in the subgradient-level
method [7], estimates of q∗ can be adaptively adjusted based on such criteria as a
sufficient ascent of a dual value or significant oscillation of the multipliers.

While subgradient directions are traditionally used to update multipliers, such direc-
tions may almost be perpendicular to directions toward λ∗, thereby leading to slow
convergence. Moreover, while optimization of the relaxed problem (4) is generally
simpler than the optimization of the original problem (1), it can still be difficult when
the relaxed problem is non-separable and NP-hard. This usually leads to difficulties
of fully optimizing the relaxed problem (4) and computing corresponding subgradient
directions of the dual function (4). Therefore, it is desirable to obtain multiplier-
updating directions that form acute angles with directions toward λ∗ in a computa-
tionally efficient manner and to show that multipliers are moving closer to λ∗.
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To reduce computational requirements by not requiring the relaxed problem to be
fully optimized, the Lagrangian relaxation and surrogate subgradient method has been
developed in [15] for separable integer programming problems under the assumption
that the constraint functions are g(x) = Ax − b. For our problem (1) under consider-
ation, for any feasible solution xk ∈ X of the relaxed problem, the surrogate dual is
defined following [15] as:

L̃(λk, xk) := f (xk) + (λk)T g̃(xk), (10)

where

g̃(xk) := g(xk) (11)

is the surrogate subgradient direction.
Since the relaxed problem is not fully optimized, surrogate dual values are generally

above the dual surface and can be larger than q∗, thereby causing the violation of (7).
As a result, surrogate subgradient directions may not form acute angles with directions
toward λ∗, and divergence may occur.

To guarantee that surrogate subgradient directions form acute angles with directions
toward λ∗, the relaxed problem has to be sufficiently optimized, such that surrogate
dual values (10) satisfy the following surrogate optimality condition:

L̃(λk, xk) < L̃(λk, xk−1), (12)

and stepsizes have to be sufficiently small

0 < ck <
q∗ − L̃(λk, xk)

∥
∥g̃(xk)

∥
∥

2 , k = 0, 1, . . . . (13)

Under the assumption that constraints are g(x) = Ax −b, it has been proved in [15,17]
that multipliers move closer to λ∗at every iteration when updated recursively:

λ̂k+1 = λk + ck g̃(xk), k = 0, 1, . . . (14)

λk+1 = [λ̂k+1]+, k = 0, 1, . . . (15)

where xk satisfy (12), and ck satisfy (13).
In addition, it has been shown that the lower-bound property of a surrogate dual

function is preserved

L̃(λk, xk) < q∗, k = 0, 1, . . . . (16)

While convergence was proved [15,17] when the constraints are g(x) = Ax − b,
the proof in [15,17] does not use or require linearity of g(x) to establish convergence.
Therefore, for general constraints g(x) considered in our paper under the regularity
condition of Assumption 2.2, multipliers converge to λ∗, and the lower bound property
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(16) is preserved if multipliers are updated according to (14)–(15), and stepsizes satisfy
(13).

When the original problem (1) is separable, that is, the objective function f (x)

and constraints g(x) are of an additive form, the relaxed problem (4) can be sepa-
rated into Ns individual subproblems. Within the surrogate subgradient framework, it
is sufficient to optimize the relaxed problem (4) with respect to several subproblems
(< Ns), subject to the surrogate optimality condition (12), to obtain surrogate subgra-
dient directions. The accompanying computational effort is approximately 1/Ns per
subproblem of the effort required to obtain subgradient directions.

When the original problem (1) is non-separable or difficult to decompose into
individual subproblems, the relaxed problem (4), subject to the surrogate optimality
condition (12), can also be optimized with a sizable efficiency gain as compared
to the subgradient method to obtain surrogate subgradient directions by optimizing
the relaxed problem with respect to selected decision variables, while keeping other
decision variables fixed.

The major difficulty of the surrogate subgradient method is its convergence, since
the upper bound on stepsizes (13) cannot be specified due to the unavailability of q∗.
In practical implementations, estimates of q∗ may violate (13), thereby leading to
divergence.

2.2 The Surrogate Lagrangian Relaxation Method

In this section, the main theoretical contribution of this paper, a new method is devel-
oped, and convergence to λ∗ is proved without requiring q∗. In the method, the sur-
rogate optimality condition (12) and the multiplier-updating formulas (14) and (15)
will be used. To prove and guarantee convergence without requiring q∗, instead of the
stepsizing formula (13), a new formula to set stepsizes will be developed, and conver-
gence of multipliers (14)–(15) to λ∗ will be proved. In addition, it will be proved that
an interleaved method [14] with the new stepsizing formula also converges to λ∗.

The main idea is to obtain stepsizes such that distances between multipliers2 at
consecutive iterations decrease, i.e.,

∥
∥
∥λ̂k+1 − λk

∥
∥
∥ = αk

∥
∥
∥λ̂k − λk−1

∥
∥
∥ , 0 < αk < 1, k = 1, 2, . . . . (17)

The stepsizing formula satisfying (17) can be derived by using (14). Indeed, (14) and
(17) imply

∥
∥
∥ck g̃(xk)

∥
∥
∥ = αk

∥
∥
∥ck−1g̃(xk−1)

∥
∥
∥ , 0 < αk < 1, k = 1, 2, . . . . (18)

2 Strictly speaking, when dealing with inequality constraints g(x) ≤ 0, distances between multipliers and
projections of multiples from the previous iteration are considered rather than distances between multipliers.
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In the new method, stepsizes ck satisfying (18) can always be uniquely obtained, unless
norms of surrogate subgradients are zero.3 Therefore, norms of surrogate subgradients
are subject to a strict positivity requirement:

∥
∥
∥g̃(xk)

∥
∥
∥ > 0. (19)

Since ck and ck−1 are positive scalars,4 and norms of surrogate subgradients are strictly
positive, (18) implies

ck = αk
ck−1

∥
∥g̃(xk−1)

∥
∥

∥
∥g̃(xk)

∥
∥

, 0 < αk < 1, k = 1, 2, . . . . (20)

The combined multiplier-updating formula (14)–(15) and (17) can be viewed as a
mapping from λ̂k(∈ Rm) to λ̂k+1(∈ Rm). Since the distances between multipliers at
consecutive iterations always strictly decrease per (17), multipliers converge to a limit,
and stepsizes approach zero. When {αk} are too small, however, stepsizes can approach
0 too fast, and the algorithm may terminate prematurely. To avoid that, stepsizes (20)
should be kept sufficiently large, and this can be achieved by keeping αk sufficiently
close to 1 as proved in the following theorem, the main result of this paper.

Theorem 2.1 Suppose that multiplier-updating directions satisfy the conditions (12)
and (19), and constraints of (1) satisfy the regularity condition of Assumption 2.2. If
αk satisfies the following conditions:

k
∏

i=1

αi → 0, (21a)

and

lim
k→∞

1 − αk

ck
= 0, (21b)

then the mapping (14)-(15), with ck satisfying (20) has a unique fixed point λ∗. 
�
This theorem is proved in three stages. In Stage 1, convergence to a unique fixed

point (not necessarily λ∗) is proved under the condition (21a). In Stage 2, convergence
to λ∗ is proved by temporarily using q∗ to establish a lower bound on stepsizes. In
Stage 3, the proof is completed with an additional asymptotical condition (21b) without
requiring q∗.

3 In the subgradient method, zero-subgradient implies that the optimum is obtained, and the algorithm
terminates with the optimal primal solution. In the surrogate subgradient method, zero-surrogate subgradient
implies that only a feasible solution is obtained, and the algorithm must proceed.
4 Initial stepsize c0 is initialized to be a positive scalar, therefore, stepsizes ck , k = 1, 2, … satisfying (18)
are positive.
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Proposition 2.2 With the stepsizing formula (20), the Lagrange multipliers (14)-(15)
converge to a unique fixed point λ̄ ≡ lim

k→∞ λk (not necessarily to λ∗), provided (21a)

and the norm positivity requirement (19) hold. 
�
Proof From (20) it follows that

ck =
k

∏

i=1

αi
c0

∥
∥g̃(x0)

∥
∥

∥
∥g̃(xk)

∥
∥

, k = 1, 2, . . . . (22)

Then by using (14) and (22), we get

∥
∥
∥λ̂k+1 − λk

∥
∥
∥ = c0

∥
∥
∥g̃(x0)

∥
∥
∥

k
∏

i=1

αi . (23)

Since projections are non-expansive, (23) can be written as an inequality

∥
∥
∥λk+1 − λk

∥
∥
∥ ≤ c0

∥
∥
∥g̃(x0)

∥
∥
∥

k
∏

i=1

αi . (24)

Since (21a) holds,
∥
∥λk+1 − λk

∥
∥ approach zero.

To prove that multipliers converge to a unique fixed point, it will be proved that sur-
rogate dual values approach dual values as

∥
∥λk+1 − λk

∥
∥become small for a sufficiently

large iteration k = L . After that, the proof uses an argument similar to convergence
results of the subgradient method with a diminishing stepsize rule as in [1,2,8,9,22].

To prove that surrogate dual values approach dual values, consider an arbitrary
and a fixed value of multipliers λ at an arbitrary iteration M . A series of surrogate
optimizations for the fixed value of λ, subject to the surrogate optimality condition
(12), consecutively finds solutions x M+1, x M+2, . . . that satisfy

q(λ) < . . . < L̃(λ, x M+2) < L̃(λ, x M+1) < L̃(λ, x M ), (25)

until a dual value q(λ) is reached. Given the discrete nature of the original problem (1),
only a finite number of iterations in (25) is required to reach q(λ), and L̃(λ, x M+k0) =
q(λ) for a positive number k0. For example, when a problem has Ns subproblems, and
one subproblem is optimized at a time, then q(λ) is obtained within at most k0 = Ns

iterations.
Following the same logic, when

∥
∥λk+1 − λk

∥
∥are sufficiently small, surrogate sub-

gradient directions approach subgradient directions. Indeed, since
∥
∥λk+1 − λk

∥
∥ in

(24) converge to zero, there exists an iteration L and a positive finite number lsuch
that the distance between λL and λL+l is sufficiently small such that values q(λL) and
q(λL+l) belong to the same facet of the dual function q(λ). As in (25), starting from
an iteration L , a surrogate dual value L̃(λL , x L) converges to a dual value q(λL+l)

within a finite number of iterations l. Therefore, starting from iteration L +l, surrogate
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subgradient directions become subgradient directions. In the subgradient method with
stepsizes approaching zero, multipliers converge to a fixed point: λ̄ = limk→∞ λk . 
�

The condition (21a) alone is not sufficient to guarantee convergence to λ∗, since
stepsizes may approach 0 fast, thereby leading to a premature algorithm termination.
To avoid that, stepsizes will be kept sufficient large by temporarily introducing q∗.

Proposition 2.3 Sufficient Condition for Convergence to λ∗ With the stepsizing
formula (20), condition (21a), and the norm positivity requirement (19), the Lagrange
multipliers (14)-(15) converge to λ∗ if there exist κ > k for all k and stepsizes satisfy
the following lower-bound condition:

q∗ − L̃(λκ, xκ )

‖g̃(xκ )‖2 ≤ cκ . (26)

Proof To prove that the multipliers λ̄ are optimal when stepsizes ck satisfy conditions
(20) and (26), and stepsize-setting parameters αk satisfy (21a), the following equality
is to be established

q(λ̄) = q∗. (27)

The lower-bound condition on stepsizes (26) leads to

q∗ − L̃(λκ, xκ ) ≤ cκ
∥
∥g̃(xκ)

∥
∥2

. (28)

Conditions (21a) and (22) imply ck → 0. Since κ > k, then cκ → 0 as k → ∞, and
inequality (28) yields

q∗ − L̃(λκ, xκ ) ≤ 0. (29)

According to Proposition 2.2, λ̄ = lim
k→∞ λk . Since κ > k, then λ̄ = lim

κ→∞ λκ implies

q∗ − L̃(λ̄, xκ ) ≤ 0. (30)

From the inequality (25) it follows that L̃(λ̄, xκ ) → q(λ̄). Therefore, by using (25)
and (30) we get

q∗ − q(λ̄) ≤ 0. (31)

Therefore, λ̄ maximizes the dual function, and λ̄ is an optimum. 
�
Theorem 2.1 will now be proved by contradiction by using condition (21b) without

requiring q∗. It will be shown that a condition contrary to (26) does not hold under
condition (21b), thereby proving that multipliers converge to λ∗.

Proof of Theorem 2.1.
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Proof The formal proof follows by a contradiction.
Step 1: Assuming that a condition contrary to Condition (26) holds, there exists κ

such that for all k ≥ κ ,

ck <
q∗ − L̃(λk, xk)

∥
∥g̃(xk)

∥
∥

2 . (32)

Under the surrogate optimality condition (12) and the condition (32), surrogate sub-
gradient directions form acute angles with directions toward λ∗, multipliers move
closer to λ∗, the lower bound property (16) of the surrogate dual is preserved, and the
following inequality holds [15,17]:

0 < q∗ − L̃(λk, xk) ≤ (λ∗ − λk)T g̃(xk) ≤
∥
∥
∥λ∗ − λk

∥
∥
∥

∥
∥
∥g̃(xk)

∥
∥
∥ . (33)

From (32) and (33) it follows that

ck <

∥
∥λ∗ − λk

∥
∥

∥
∥g̃(xk)

∥
∥

∥
∥g̃(xk)

∥
∥2 =

∥
∥λ∗ − λk

∥
∥

∥
∥g̃(xk)

∥
∥

. (34)

Therefore, for all k ≥ κ ,

ck
∥
∥
∥g̃(xk)

∥
∥
∥ <

∥
∥
∥λ∗ − λk

∥
∥
∥ . (35)

In general, stepsizes satisfying (20) and (35) may not lead to convergence, since
stepsizes ck may decrease faster than distances between λ∗ and λk , and multipliers
may not reach λ∗.

Step 2: It will be proved that the condition (21b) ensures that stepsizes ck decrease
slower than distances between λ∗ and λk , and that the inequality (35) is violated as a
result.

Consider the inequality (35) at an iteration κ + m (m > 0)

cκ+m
∥
∥
∥g̃(xκ+m)

∥
∥
∥ <

∥
∥
∥λ∗ − λκ+m

∥
∥
∥. (36)

Since the inequality (32) holds by assumption, multipliers move closer to λ∗, and there
exists 0 < βκ+m−1 < 1 such that

∥
∥
∥λ∗ − λκ+m

∥
∥
∥ = βκ+m−1

∥
∥
∥λ∗ − λκ+m−1

∥
∥
∥. (37)

The value of βk(k ≥ κ) is the rate with which multipliers approach λ∗. When βk ∼
1,5 the contradiction will be established by showing that the left-hand side of (35)
decreases slower than the right-hand side for sufficiently large values of αk(< 1) as k

5 When βk << 1, the right-hand side of (35) decreases faster than the left-hand side as k increases. This
leads to the contradiction, and the theorem is proved.
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increases. With the stepsizing formula (20) and with the equality (37), the inequality
(36) becomes

ακ+m−1cκ+m−1
∥
∥
∥g̃(xκ+m−1)

∥
∥
∥ < βκ+m−1

∥
∥
∥λ∗ − λκ+m−1

∥
∥
∥ . (38)

Following the same logic, the inequality (38) can be inductively represented in the
following way:

cκ
∥
∥
∥g̃(xκ )

∥
∥
∥ <

∏κ+m−1
i=κ βi

∏κ+m−1
i=κ αi

∥
∥
∥λ∗ − λκ

∥
∥
∥, m > 0. (39)

To arrive at the contradiction, given that the left-hand of (39) is positive, the right-hand
side of (39) will be proved to be arbitrarily small under (21b) as m increases.

From (14)–(15), (37), and the non-expansive property of projections, it follows that

βk :=
∥
∥λ∗ − λk+1

∥
∥

∥
∥λ∗ − λk

∥
∥

≤
∥
∥λ∗ − λk − ck g̃(xk)

∥
∥

∥
∥λ∗ − λk

∥
∥

. (40)

The right-hand side of (40) can be expanded in Taylor series around ck → 0, while
keeping first two terms of the expansion by using the following relation:

∂

∂c
‖h(c)‖2 = h(c)T ∂

∂c h(c)

‖h(c)‖2
, (41)

where h is a vector-valued function of c. Therefore,

βk ≤ 1 − (λ∗ − λk)T g̃(xk) ck

∥
∥λ∗ − λk

∥
∥

2 + O((ck)2). (42)

Consider the following ratio:

1 − αk

1 − βk
≤ 1 − αk

ck

(

(λ∗ − λk)T g̃(xk)
∥
∥λ∗ − λk

∥
∥

2 − O(ck)

)−1

. (43)

The second term of the product in the right-hand side of (43) is bounded. Indeed, from
the relation (33) it follows that

ε <
(λ∗ − λk)T g̃(xk)

∥
∥λ∗ − λk

∥
∥

2 ≤
∥
∥g̃(xk)

∥
∥

∥
∥λ∗ − λk

∥
∥
, (44)

for any small ε > 0.
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For sufficiently small ck , we can assume that −ε/2 < O(ck) < ε/2, therefore,

ε

2
<

(λ∗ − λk)T g̃(xk)
∥
∥λ∗ − λk

∥
∥

2 − O(ck). (45)

Assuming
∥
∥λk − λ∗∥∥ > ε > 0, and

∥
∥g(x)

∥
∥ < M < ∞, from (44) and (45) it follows

that

0 <
ε

2
<

(λ∗ − λk)T g̃(xk)
∥
∥λ∗ − λk

∥
∥2 − O(ck) <

∥
∥g̃(xk)

∥
∥

∥
∥λ∗ − λk

∥
∥

+ ε

2
<

M

ε
+ ε

2
< ∞. (46)

Therefore, the reciprocal value in (43) is also bounded. On the other hand, if
∥
∥λk − λ∗∥∥ < ε for any small ε > 0, then λk → λ∗, and the convergence is proved.

When the asymptotical condition (21b) holds, the right-hand side of (43) converges
to zero as k → ∞. Therefore, the left-hand side of (43) converges to zero

1 − αk

1 − βk
→ 0. (47)

To arrive at the contradiction, we need to show that, while the left-hand side of (39) is
constant for a given κ , the right-hand side can be made arbitrarily small as m → ∞ ,
provided (47) holds. That is, it remains to be proved that, for any predetermined and
arbitrarily small value ε > 0, there exists an iteration mε satisfying

∏κ+mε−1
i=κ β i

∏κ+mε−1
i=κ αi

< ε. (48)

Based on (47), αk approaches 1 faster than the entire expression in (47) approaches
zero. Therefore, there exists an iteration N such that for any n > N there exist a
positive constant δn > 0, and for an arbitrarily small positive ε1 > 0 the following
conditions hold:

1 − αn

1 − βn
< ε1 (49)

and

1 − αn = ε
1+δn
1 . (50)

From the inequality (49), it follows that

βn

αn
<

1

αn

(

1 + αn

ε1
− 1

ε1

)

= 1

ε1
+ 1

αn

(

1 − 1

ε1

)

. (51)
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Based on (50), the inequality (51) becomes

βn

αn
<

1

ε1
+ 1

1 − ε
1+δn
1

(
ε1 − 1

ε1

)

= 1

ε1

(

1 + ε1 − 1

1 − ε
1+δn
1

)

= 1

ε1

(

−ε
1+δn
1 + ε1

1 − ε
1+δn
1

)

=
(

1 − ε
δn
1

1 − ε
1+δn
1

)

. (52)

Given that ε1 > 0 is arbitrarily small, (52) becomes

βn

αn
<

(

1 − ε
δn
1

1 − ε
1+δn
1

)

∼ 1 − ε
δn
1 < 1 − ε

1+δn
1 = αn . (53)

Therefore, given (21a),

k
∏

i=n

β i

αi
<

k
∏

i=n

αi → 0. (54)

Thus, the inequality (48) is established for an arbitrary small value ε > 0 and iteration
mε. Therefore, (39) becomes

cκ
∥
∥
∥g̃(xκ)

∥
∥
∥ < ε

∥
∥
∥λ∗ − λκ

∥
∥
∥. (55)

Since ε > 0 is arbitrarily small, the inequality (55) does not hold for a fixed iteration
κ . Therefore, the inequality (34) does not hold for k = κ + mε. This contradicts the
assumption, and convergence to λ∗ is proved. 
�

Based on the convergence results proved in Theorem 2.1, the following Corollary
discusses the convergence of the interleaved method [14] developed for separable prob-
lems. In the method, Lagrange multipliers are updated after each subproblem is solved.

Corollary 2.4 The interleaved method converges with the novel stepsizing formula
(20) provided the conditions (21a) and (21b) hold.

Proof The interleaved method is defined for separable problems. For such problems,
after constraints are relaxed, the Lagrangian function can be represented in an additive
form L = L1 + · · · + L Ns , and the relaxed problem can be separated into Ns sub-
problems. To prove this Corollary, it is sufficient to show that the surrogate optimality
condition (12) holds after one subproblem is solved. Indeed, after a subproblem i is
solved to optimality, and xk

i is obtained, then by definition of an optimum

Li (λ
k, xk

i ) ≤ Li (λ
k, ξ), ∀ξ. (56)

Since the inequality (56) holds for all feasible ξ , it also holds for xk−1

Li (λ
k, xk

i ) ≤ Li (λ
k, xk−1

i ), (57)
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Since subproblems, other than i , are not optimized, the following equality holds

L−i (λ
k, xk

−i ) = L−i (λ
k, xk−1

−i ), (58)

where xk−1
−i = xk−1

j , j = 1, . . . , Ns, j �= i . Given that the problem is separable, and
the Lagrangian is additive,

L(λk, xk) ≤ L(λk, xk−1), (59)

where xk = (xk−1
1 , . . . , xk

i , . . . xk−1
Ns

).
If the inequality (59) is strict, then the Corollary is proved. If the inequality (59)

holds as an equality, then the method proceeds by optimizing the next subproblem
until the inequality (59) holds as a strict inequality. If, nevertheless, after solving all
the subproblems, the surrogate optimality condition is satisfied as an equality, this
means that a surrogate dual value equals to a dual value, and a surrogate subgradient
direction equals to a subgradient direction. This can happen if λk−1 and λk belong
to the same facet of the dual function, and subgradient directions at iterations k and
k-1 are equal. At this point, the rest of the proof is identical to the results proved in
Theorem 2.1 and Proposition 2.2. 
�

2.3 Convergence Rate of the Surrogate Lagrangian Relaxation Method

Following the general framework of standard subgradient methods [8], it is proved
in Proposition 2.5 that when λk are not too close to λ∗, convergence rate is linear
assuming that stepsizes ck are sufficiently small.

Proposition 2.5 Under the Assumption 2.1 [8], the new method converges with a
linear rate for sufficiently small stepsizes ck , assuming there exists a scalar μ > 0
that satisfies

q∗ − L̃(λk, xk) ≥ μ

∥
∥
∥λ∗ − λk

∥
∥
∥

2
, k = 0, 1, . . . , (60)

and stepsizes ck satisfy

0 < ck <
1

2μ
, k = 0, 1, . . . , (61)

and

ck
∥
∥g̃(xk)

∥
∥

2

μ
<

∥
∥
∥λ∗ − λk

∥
∥
∥

2
, k = 0, 1, . . . . (62)

Proof From the inequalities (33) and (60), it follows that

∥
∥
∥λ∗ − λk+1

∥
∥
∥

2 ≤
∥
∥
∥λ∗ − λk

∥
∥
∥

2
(1 − 2ckμ) + (ck)2

∥
∥
∥g̃(xk)

∥
∥
∥

2
. (63)
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Dividing both sides of (63) by
∥
∥λ∗ − λk

∥
∥

2
yields

(βk)2 ≡
∥
∥λ∗ − λk+1

∥
∥

2

∥
∥λ∗ − λk

∥
∥2 ≤ (1 − 2ckμ) + (ck)2

∥
∥g̃(xk)

∥
∥

2

∥
∥λ∗ − λk

∥
∥2 . (64)

Intuitively, given that stepsizes are sufficiently small, and multipliers are sufficiently
far from λ∗, the last term is negligibly small, and the convergence rate is linear with
βk ≈ √

(1 − 2ckμ) < 1. To determine the neighborhood of λ∗, to which the linear
convergence can be guaranteed, the right-hand side of (64) should be less than 1, that
is

(1 − 2ckμ) + (ck)2
∥
∥g̃(xk)

∥
∥

2

∥
∥λ∗ − λk

∥
∥

2 < 1. (65)

Under the condition (62), the inequality (65) holds. 
�
Remark 2.6 Assumptions (60) and (62) imply the following assumption on stepsizes

ck <
q∗ − L̃(λk, xk)

∥
∥g̃(xk)

∥
∥

2 . (66)

The assumption (66) is the condition on the stepsizes (13) used in the convergence
proof of the surrogate subgradient method [15]. As stated earlier, under the condition
(66), the lower bound of the surrogate dual is preserved per (16), thereby implying
that the left-hand side of (60) is positive, and μ > 0 that satisfies (60) exists. In other
words, under (62), assumptions (60) and (66) are equivalent. 
�

2.4 Practical Implementation of the Surrogate Lagrangian Relaxation Method

This subsection discusses practical implementation aspects of our method. A con-
structive rule for setting parameters αk is developed in Proposition 2.7 and proved to
satisfy conditions (21a) and (21b) required for convergence to λ∗ without requiring
q∗. Lastly, an algorithm of the method is presented.

Proposition 2.7 The stepsize-setting parameters αk can be updated as follows to
ensure that the multipliers converge to λ∗:

αk = 1 − 1

Mk p
, p = 1 − 1

kr
, M ≥ 1, 0 < r < 1, k = 2, 3, . . . . (67)

Proof Step 1: To show that stepsizes (22) converge to zero, it is sufficient to show that
the following product converges to zero

k
∏

i=1

αi =
k

∏

i=1

(

1 − 1

Mi p

)

. (68)
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For the ease of the proof, convergence of (68) to zero will be established by proving
that the natural logarithm of (68) converges to −∞. After taking the logarithm of the
product (68), it becomes the sum of the logarithms

log

(
k

∏

i=1

αi

)

=
k

∑

i=1

log(αi ) =
k

∑

i=1

log

(

1 − 1

Mi p

)

. (69)

Indeed, as i → ∞, the first term of the Taylor series expansion of log(1 − 1
Mi p ) is

− 1
Mi . Therefore, the sum (69) converges to −∞, and stepsizes (22) converge to zero.
Step 2: To show that condition (21b) of Theorem 2.1 holds, given (67), condition

(21b) can be rewritten as

1 − αk

ck
∼

1
Mk p

k∏

i=1

(

1 − 1
Mi p

)
. (70)

As before, it will be shown that that the logarithm of (70) approaches −∞. Consider
the logarithm of the right-hand side of (70)

log

(
1

Mk p

)

−
k

∑

i=1

log

(

1 − 1

Mi p

)

. (71)

To prove the asymptotical condition (21b), it is sufficient to demonstrate that

log

(

1 − 1

Mk p

)

= o

(
1

k
log

(
1

Mk p

))

. (72)

Given that p → 1 as k → ∞, the following relation holds:

lim
k→∞

log(1 − 1
Mk p )

1
k log( 1

Mk p )
= lim

k→∞
log(1 − 1

Mk )

1
k log( 1

Mk )
. (73)

Using the L’Hopital’s rule leads to

lim
k→∞

log
(

1 − 1
Mk

)

1
k log

( 1
Mk

) = lim
k→∞

d
dk log

(

1 − 1
Mk

)

d
dk

( 1
k log

( 1
Mk

)) = lim
k→∞

k

(1 − Mk)(1 − log(Mk))
.(74)

Applying L’Hopital’s rule one more time yields

lim
k→∞

k

(1 − Mk)(1 − log(Mk))
= lim

k→∞
1

k−1 − M log(Mk)

= − lim
k→∞

1

M log(Mk)
= 0. (75)
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As proved in the steps above, ck → 0, and the condition (21b) holds. Therefore,
convergence of multipliers to λ∗ is proved. 
�

The entire algorithm can be summarized in the following steps:
Step 0: Initialize multipliers λ0, obtain x0 by optimizing the relaxed problem,

estimate q̂ of q∗ by using best heuristics available for a particular problem, initialize
c0 according to

c0 = q̂ − L̃(λ0, x0)
∥
∥g̃(x0)

∥
∥2 . (76)

Step 1: Update αk , for example, by using (67). For given values (αk, xk), update step-
sizes ck according to (20). For given values (xk, λk, ck), update multipliers according
to (14)-(15) to obtain λk+1.

Step 2: For the given λk+1, minimize the Lagrangian function until the surrogate
optimality condition (12) is satisfied. As a special case, for separable problems, it is
sufficient to optimize just one subproblem (Corollary 2.4).

Step 3: Check stopping criteria: CPU time, number of iterations, surrogate subgra-
dient norm, distance between multipliers, etc. If stopping criteria are satisfied, then go
to Step 4. Otherwise, go to Step 1.

Step 4: Obtain feasible solutions. Problem-specific heuristics may be used to obtain
feasible costs while a dual value provides a lower bound on the optimal cost. A duality
gap can then be calculated by using the best available feasible cost and the largest
available dual value.

As proved before, at convergence of multipliers, a surrogate dual value converges
to a dual value. If the algorithm is terminated before convergence, a dual value can be
obtained by fully optimizing the relaxed problem. In Sect. 3, it will be demonstrated
that owing to reduced computational requirements, the new method can obtain a better
dual value, a better feasible cost, and a lower duality gap as compared to other methods.

3 Numerical Testing

The purpose of this section is to compare the surrogate Lagrangian relaxation method
with other methods that are used for optimizing non-smooth dual function such as the
subgradient-level method and the incremental subgradient method. In Example 1, a
small nonlinear (quadratic) integer problem is considered to demonstrate that, surro-
gate subgradient directions frequently form small acute angles with directions toward
the optimal multipliers, thereby alleviating the zigzagging issues that often accompany
the subgradient method. In Example 2, linear integer generalized assignment problems
are considered to demonstrate that the new method is capable of handling large sep-
arable optimization problems. It is then demonstrated that when simple heuristics are
used to adjust relaxed problem solutions to obtain feasible costs, the method is capa-
ble of reducing the duality gap as compared to other methods such as the incremental
subgradient method. In Example 3, nonlinear integer quadratic assignment problem
is considered to demonstrate the quality of the method for optimizing non-separable
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non-smooth dual problems, and the method is compared with the subgradient-level
method. The new method is implemented using CPLEX 12.2 on Intel� Xeon� CPU
E5620 (12M Cache, 5.86 GT/s Intel� QPI) @ 2.40 GHz (2 processors) and 36.00 GB
of RAM.

Example 3.1 A Nonlinear Integer Problem Consider the following nonlinear integer
optimization problem

min
{x1,x2,x3,x4,x5,x6}∈Z+∪{0}

{

0.5x2
1 + 0.1x2

2 + 0.5x2
3 + 0.1x2

4 + 0.5x2
5 + 0.1x2

6

}

(77)

s.t. 48 − x1 + 0.2x2 − x3 + 0.2x4 − x5 + 0.2x6 ≤ 0,
(78)

250 − 5x1 + x2 − 5x3 + x4 − 5x5 + x6 ≤ 0.

After constraints (78) are relaxed by the multipliers λ1 and λ2, respectively, the
Lagrangian function becomes

L(x1, x2, x3, x4, x5, x6, λ1, λ2) = 0.5x2
1 + 0.1x2

2 + 0.5x2
3

+0.1x2
4 + 0.5x2

5 + 0.1x2
6 +

λ1(48 − x1 + 0.2x2 − x3 + 0.2x4 − x5 + 0.2x6)

+λ2(250 − 5x1 + x2 − 5x3 + x4 − 5x5 + x6).

(79)

Given that the objective function and coupling constraints in (77)–(79) are of an
additive form, the relaxed problem can be separated into six individual subproblems:

min
{xi }∈Z+∪{0}, i=1,...,6

L(x1, x2, x3, x4, x5, x6, λ1, λ2)

= min
{xi }∈Z+∪{0}, i=1,...,6

{(0.5x2
1 − λ1x1 − 5λ2x1) + (0.1x2

2 + 0.2λ1x2 + λ2x2)

+(0.5x2
3 − λ1x3 − 5λ2x3) + (0.1x2

4 + 0.2λ1x4 + λ2x4)

+(0.5x2
5 − λ1x5 − 5λ2x5) + (0.1x2

6 + 0.2λ1x6 + λ2x6) + 48λ1 + 250λ2}. (80)

To compare subgradient and surrogate Lagrangian relaxation methods, the step-
sizing formula (20) is used to update the multipliers within both frameworks. The
stepsize is initialized according to (76) by using an optimal value of the LP relaxation
of (77)–(78), as an estimate of q∗. In the subgradient method, the relaxed problem (80)
is optimized with respect to all {xi }, i = 1, …, 6. Since the relaxed problem (80) is sep-
arable, individual subproblems can be solved individually. In this example, three out
of six subproblems are solved per iteration to obtain surrogate subgradient directions.
The multipliers λ1 and λ2 are updated 18 iterations within the subgradient frame-
work and 36 iterations within the surrogate Lagrangian relaxation framework. In both
frameworks, each subproblem is solved 18 times. The trajectories of the multipliers
are shown in Figs. 1 and 2.

Figure 1 demonstrates that the subgradient directions g(xk) are frequently almost
perpendicular to the directions λ∗ − λk toward λ∗ (respective directions are shown in
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1

1.5

2

2.5

3

3.5

0 1 2 3 4 5 6 7 8

Fig. 1 Trajectories of the multipliers using the subgradient method

1

1.5

2

2.5

3

3.5

4

4.5

0 1 2 3 4 5 6 7 8

Fig. 2 Trajectories of the multipliers using the surrogate subgradient method

Table 1 Comparison of the subgradient method and the surrogate Lagrangian relaxation method

Method Number of iterations CPU time (s) Distance to the optimum

Subgradient method 18 2.75 3.574777
Surrogate Lagrangian relaxation method 36 1.62 0.798711

Fig. 1 by solid and dashed arrows), and the multipliers zigzag causing slow conver-
gence.

In contrast, the surrogate directions g̃(xk) (shown by a solid arrow in Fig. 2) are
smoother and frequently form smaller angles with the directions λ∗ − λk toward λ∗
(shown by a dashed arrow in Fig. 2), thereby alleviating zigzagging and leading to
faster convergence.

Table 1 demonstrates that within the surrogate Lagrangian relaxation framework,
the multipliers move closer to λ∗ as compared to the multipliers updated by using
subgradient directions, thereby reducing the number of iterations required for con-
vergence. In addition, since the relaxed problem is not fully optimized in the new
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method, the surrogate subgradient directions are easier to obtain. This also leads to
faster convergence in terms of the computation time.

Example 3.2 Generalized Assignment Problems In generalized assignment prob-
lems, the total cost for assigning a given set of jobs to available machines is mini-
mized. Each job is assigned to one machine, and the total processing time for all jobs
assigned to a machine should not exceed the machine’s time available. Mathematically,
the generalized assignment problem is formulated in the following way:

min
xi, j

I
∑

i=1

J
∑

j=1

gi, j xi, j , xi, j ∈ {0, 1} , gi, j ≥ 0, ai, j ≥ 0, b j ≥ 0, (81)

s.t.
I

∑

i=1

ai, j xi, j ≤ b j , j = 1, . . . , J, (82)

J
∑

j=1

xi, j = 1, i = 1, . . . , I, (83)

where I is the number of jobs, and J is the number of machines, ai, j is time required
by machine j to perform job i , and gi, j is cost for assigning job i to machine j .
Capacity constraints (82) ensure that the total amount of time, required by the jobs to
be performed on a given machine, does not exceed the machine j’s time available b j .
Constraints (83) ensure that each job is to be performed on one and one machine only.
For more details, refer to [24–31].

Since the objective function of (81) and constraints (82)–(83) are of an additive form,
after relaxing constraints (83) by introducing the Lagrange multipliers, the problem
is formulated in a separable form

q(λ) = min
xi, j

I
∑

j=1

J
∑

i=1

(gi, j + λi ) xi, j −
J

∑

i=1

λi ,

(84)

s.t.
I

∑

i=1

ai, j xi, j ≤ b j , j = 1, . . . , J, xi, j ∈ {0, 1} , gi, j ≥ 0, ai, j ≥ 0,

b j ≥ 0.

As proved in Corollary 2.4, optimization with respect to only one subproblem is
sufficient to satisfy the surrogate optimality condition

I
∑

i=1

⎛

⎝

J
∑

j=1

gi, j xk+1
i, j

+ λk+1
i

⎛

⎝

J
∑

j=1

xk+1
i, j

− 1

⎞

⎠

⎞

⎠

<

I
∑

i=1

⎛

⎝

J
∑

j=1

gi, j xk
i, j + λk+1

i

⎛

⎝

J
∑

j=1

xk
i, j − 1

⎞

⎠

⎞

⎠. (85)
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As discussed earlier, the accompanying computational effort is approximately 1/J per
subproblem compared to the effort required to fully optimize the relaxed problem and
obtain subgradient directions.

3.1 Comparison to Standard Methods for Non-Smooth Optimization

To demonstrate the quality of the surrogate Lagrangian relaxation method, it is com-
pared to existing methods available for optimizing non-smooth dual functions, such
as the simple subgradient method, the simple subgradient-level method, and the incre-
mental subgradient method. The comparison to the last two methods is especially
important, since they do not require q∗ for convergence to λ∗.

3.1.1 The Simple Subgradient Method

In the method [22], the relaxed problem (84) is fully optimized, and stepsizes are
updated according to the following relation

0 < ck < α
UB − q(λk)
∥
∥g(xk)

∥
∥

2 , 0 < α < 2, (86)

where UB is the best feasible cost available at iteration k.

3.1.2 The Simple Subgradient-Level Method

In the method [7], the relaxed problem (84) is fully optimized, and stepsizes are updated
according to the following relation

0 < ck < α
qlev + δk − q(λk)

∥
∥g(xk)

∥
∥

2 , 0 < α < 2. (87)

3.1.3 The Incremental Subgradient Method

In the method [8], each subproblem is solved to optimality. After each problem is opti-
mized, multipliers are updated, and stepsizes are updated, similarly to the subgradient-
level method, according to

0 < ck < α
qlev + δk − q(λk)

n
∥
∥g(xk)

∥
∥2 , 0 < α < 2, (88)

where n is the number of subproblems, qlev is the best dual value obtained up until
iteration k, and δk is a parameter that decreases by a factor of 2 every time a signifi-
cant oscillation of multipliers is detected, that is when multipliers “travel” a distance
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Fig. 3 Comparison of the surrogate Lagrangian relaxation method with parameters M= 25 and r = 0.06
against: 1 the simple subgradient method with α = 1; 2 the subgradient-level method with parameters
δ0 = 100000 and B = 1000; 3 the incremental subgradient method with parameters δ0 = 100000 and B =
1000

exceeding a predetermined value B

σk > B, (89)

where

σk = σk−1 +
∥
∥
∥λk − λk−1

∥
∥
∥ . (90)

Once significant oscillations are detected, and condition (89) is satisfied, σk is reset to
0. For more information, refer to [7,8].

For a fair comparison of the methods, each subproblem is solved exactly once per
iteration. For example, within the subgradient method, minimization of the relaxed
problem counts as one iteration. In the incremental subgradient method, one iteration is
complete once each subproblem is solved exactly once. In the new method, 10, 2 and 1
subproblems were chosen to be solved for instances GAPd801600, GAPd201600, and
GAPd15900,6 respectively. Therefore, for these instances the number of sub-iterations
is 8, 10, and 15, respectively.

Figures 3, 4, 5 demonstrate performance of the surrogate Lagrangian relaxation
method, as compared to subgradient methods.7 Numerical results indicate that within
the incremental subgradient framework, multipliers approach λ∗ slowly, since step-
sizes decrease to zero slowly. This happens because as stepsizes decrease, it takes more
iterations for multipliers to “travel” distance B. This leads to slow convergence when
multipliers move closer to λ∗. For a similar reason, convergence of the subgradient-
level method can be slower as compared to the surrogate Lagrangian relaxation method.

6 For the GAP15900 instance, the implementation of the new method may resemble that of the interleaved
method [14] since only one subproblem is optimized at a time. The important difference between the new
method and the interleaved method is the stepsizing formula.
7 Performance of all methods in Figs. 3, 4, 5 is tested by comparing distances to multipliers obtained by a
subgradient method with non-summable stepsizes [22] after sufficiently many iterations (>20000).
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Fig. 5 Comparison of the surrogate Lagrangian relaxation method with parameters M= 25 and r = 0.06
against: 1 the simple subgradient method with α = 1; 2 the subgradient-level method with parameters
δ0 = 50000 and B = 750; 3 the incremental subgradient method with parameters δ0 = 50000 and B = 750

Since duality gaps of generalized assignment problems are typically small, a feasible
cost can provide a reasonably good approximation of q∗ within the simple subgradient
method. However, convergence to λ∗ does not occur.

The following figure demonstrates a comparison of duality gaps obtained by the
new method and the incremental subgradient method for the GAP d201600 instance.

As demonstrated in Fig. 6, owing to the reduced computational effort, in the new
method the dual value increases faster, and with the help of heuristics, feasible costs
obtained are better, as compared to the incremental subgradient method. As a result,
the duality gap obtained by using the new method is smaller than the gap obtained by
using the incremental subgradient method.

Example 3.3 Quadratic Assignment Problems The objective of the Quadratic
Assignment Problem (QAP) of order n is to find the best allocation of n facilities
to n locations. Formulated in 1957 by [32], the problem has been applied to the plan-
ning of buildings in university campuses [33], arrangement of departments in hospitals
[34], scheduling parallel production lines [35], and ranking of archeological data [36].
It has also been shown that QAPs can be applied to the field ergonomics to solve the
typewriter keyboard design problem [37].
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Fig. 6 Comparison of the surrogate Lagrangian relaxation method with parameters M = 20 and r =
0.1 against the incremental subgradient method with parameters δ0 = 500 and B = 15 for solving the
GAPd201600 instance

Mathematically, the quadratic assignment problem can be formulated as an integer
programming problem:

min
xi, j ,xh,l

n
∑

i, j=1

n
∑

h,l=1

di,h f j,l xi, j xh,l , xi, j ∈ {0, 1} , di,h ≥ 0, f j,l ≥ 0, (91)

s.t.
n

∑

i=1

xi, j = 1, j = 1, . . . , n, (92)

n
∑

j=1

xi, j = 1, i = 1, . . . , n, (93)

where n is the number of facilities and locations, di,h is the distance between location i
and location h, f j,l is the weight/flow between facility j and facility l (the net transfer
of goods/supplies from facility j to l). Intuitively, two facilities with high flow should
be built close to each other. Binary decision variables xi, j correspond to facility i being
placed in location j iff xi, j = 1. Assignment constraints (92) and (93) ensure that one
and one facility only can be assigned to a specific location.

The problem formulation (91)–(93) is non-separable because of the cross-product
of decision variables in the objective function of (91). For a fair comparison of the
methods, after the problem is linearized, branch-and-cut will be used to obtain approx-
imate solutions of the relaxed problem for the surrogate Lagrangian relaxation method
and exact solutions of the relaxed problem for the subgradient-level method.

After relaxing constraints (93) by introducing Lagrange multipliers, the relaxed
problem becomes:
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min
xi, j ,xh,l

⎧

⎨

⎩

n
∑

i, j=1

n
∑

h,l=1

di,h f j,l xi, j xh,l +
n

∑

i=1

λi

⎛

⎝

n
∑

j=1

xi, j − 1

⎞

⎠

⎫

⎬

⎭
,

s.t. xi, j ∈ {0, 1} and (92). (94)

Since decision variables xi, j and xh,l are binary, feasible region for the product xi, j ·xh,l

consists of the four points: (0,0), (0,1), (1,0), and (1,1). Moreover, the product takes
on the value of 1 if and only if both decision variables equal to 1. Based on this
observation, the relaxed problem can be equivalently rewritten in a linear form as:

min
xi, j ,xh,l ,Fi, j,h,l

⎧

⎨

⎩

n
∑

i, j=1

n
∑

h,l=1

di,h f j,l Fi, j,h,l +
n

∑

i=1

λi

⎛

⎝

n
∑

j=1

xi, j − 1

⎞

⎠

⎫

⎬

⎭
,

s.t. xi, j ∈ {0, 1} , Fi, j,h,l ≥ xi, j + xh,l − 1, and (92). (95)

To obtain subgradient and surrogate multiplier-updating directions, the linear problems
formulation (95) is optimized by using branch-and-cut. In the subgradient method,
the relaxed problem (95) is fully optimized. In the surrogate Lagrangian relaxation
method, the relaxed problem (95) is optimized approximately subject to the surrogate
optimality condition:

n
∑

i, j=1

n
∑

h,l=1

di,h f j,l Fk+1
i, j,h,l

+
n

∑

i=1

λi

⎛

⎝

n
∑

j=1

xk+1
i, j

− 1

⎞

⎠ <

n
∑

i, j=1

n
∑

h,l=1

di,h f j,l Fk
i, j,h,l

+
n

∑

i=1

λi

⎛

⎝

n
∑

j=1

xk
i, j

− 1

⎞

⎠.

(96)

In practice, the inequality (96) can be operationalized within the commercial solver
CPLEX. Given initial values xk

i, j and Fk
i, j,h,l as a warm MIP start explained in the

beginning of the section, once branch-and-cut finds one solution that is strictly better
than xk

i, j and Fk
i, j,h,l , optimization stops, the surrogate optimality condition is satisfied

by definition, and surrogate multiplier-updating directions are computed by using
xk+1

i, j .
Figure 7 demonstrates performance comparison of surrogate Lagrangian relaxation

and the subgradient-level method. In the surrogate Lagrangian method, multipliers
converge to the optimum with tolerance 0.001 within 800 iterations. In the subgradient-
level method, parameters δk and B can be chosen to ensure fast convergence within
first 200 iterations. However, as stepsizes decrease, it can take many iterations for
multipliers to “travel” distance B, thereby leading to slow convergence as multipliers
approach λ∗.
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Fig. 7 Comparison of the surrogate Lagrangian relaxation method with parameters M = 10 and r = 0.2
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2000, and 3 δ0 = 10000 and B = 1600 for the QAPChr20a instance [38]

4 Conclusions

The major breakthrough of this paper is on the development of the novel Surrogate
Lagrangian relaxation method and its convergence proof without requiring the optimal
dual value and without fully optimizing the relaxed problem. Stepsizes that guaran-
tee convergence without requiring the optimal dual value have been obtained. Under
additional assumptions, convergence rate of the new method is proved to be linear.
Also, at convergence of the multipliers, the new method generates a valid lower bound.
Numerical results demonstrate that the method reduces computational requirements by
reducing the effort required to obtain surrogate directions and by alleviating zigzag-
ging of the multipliers. From the application point of view, an important extension
of the method would be its combination with other methods in order to efficiently
solve mixed-integer programming problems. In particular, the future work would be
to prove that the method can be combined with branch-and-cut in order to efficiently
solve mixed-integer linear programming problems by exploiting both separability and
linearity, thereby resolving the difficulties that frequently accompany pure branch-
and-cut.
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