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In Nonlinear Model Predictive Control (NMPC), the optimization problem may be nonconvex. It is 
important to find a global solution since a local solution may not be able to operate the process at 
desired setpoints. Also the solution must be available before the control input has to be applied to the 
process. In this paper, a stochastic algorithm called the Nested Partitions Algorithm (NPA) is used for 
global optimization. The NPA divides the search space into smaller regions and either concentrates 
search in one of these regions called the most promising region or backtracks to a larger region in the 
search space based on a performance index. To adapt the NPA to solve dynamic NMPC with continuous 
variables, a new partitioning scheme is developed that focuses on the first few control moves in the 
control horizon. The expected number of iterations taken by the NPA is presented. Convergence speed is 
improved by reducing the size of the starting most promising region based on a good starting point. The 
discrete sampling nature ofthe NPA may cause difficulty in finding the global solution in a continuous 
space. A gradient-based search is used with the NPA to overcome this difficulty. The solution quality is 
assessed in terms of the error from the actual global minimum. The algorithm is shown to give a 
feasible solution that provides asymptotic stability. Case studies are used to show the algorithm 
performance in terms of tracking setpoints, cost, solution quality and convergence time. 

1. Introduction 

Model Predictive Control (MPC) is an important process control 
technique based on constrained optimization (e.g., Piche, Sayyar­
Rodsari, Johnson, & Gerules, 2000; Norquay, Palazoglu, & 
Romagnoli, 1999; Henson, 1998; Camacho & Bordons, 2004; Qjn 
& Badgwell, 2003; Zanin, Tvrzska de Gouvea, & Odloak, 2002; 
Kawathekar & Riggs, 2007; Havlena & Findejs, 2005; Zhao, Guiver, 
Neelakantan, & Biegler, 2001; Seki, Ogawa, Ooyama. Akamatsu. 
Ohshima. & Yang. 2001). It produces control inputs to operate the 
process outputs at the desired setpoints by solving an optimization 
problem for each time step. Optimization is done using a process 
model to represent the actual process. Either a first principle or an 
empirical model can be used. In Nonlinear MPC (NMPC). the 
nonlinear system dynamics may cause the optimization problem 
to be nonconvex. In this case it is important to find the global 
solution since a local solution may not be able to drive the process 
outputs at the setpoints. Timing is also crucial as the solution has 
to be available before the next time step. 
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Usually gradient based deterministic methods such as Sequen­
tial Quadratic Programming (SQP) and Branch-and-Bound are 
used to solve the nonlinear optimization problem posed by NMPC 
(e.g" Martinsen, Biegler. & Foss, 2004; Kittisupakorn. Thitiyasook. 
Hussain. & Daosud. 2009; Diehl. Bock. Schl6der. Findeisen. Nagy. 
& Allg6wer. 2002; Sriniwas & Arkun. 1997; Cannon. 2004; Mu. 
Rees. & Liu. 2005; Sousa. Babuska. & Verbruggen. 1997; Baptista, 
Sousa. & Sa da Costa. 2001). In SQP. at each iteration. the system 
model is linearized to form a convex optimization problem. the 
solution to which is then used in the next iteration. Due to a 
gradient-based strategy. SQP may converge to a local minimum. 
Branch-and-Bound uses convex underestimates (relaxations) to 
solve the nonconvex problem. Good convex underestimates for 
some nonconvex functions may not be available. Sparse SQP 
methods (e.g .. Betts & Huffman. 1992; Yokoyama. Suzuki. & 
Tsuchiya, 2008) use the sparsity of the hessian to reduce the 
computation time of the algorithm. Although the computation 
time has been reduced. the algorithm due to its gradient based 
strategy may still converge to a local minimum. 

To avoid the problems related with gradient based methods. 
stochastic algorithms are being used. Stochastic optimization algo­
rithms such as Genetic Algorithms (GA) (e.g .. Onnen. Babuska, 
Kaymak. Sousa. Verbruggen. & Isermann, 1997; Sarimveis & Bafas. 
2003; Al-Duwaish & Naeem. 2001; Martinez. Senent. & Blasco, 1998; 
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Potocnik & Grabec. 2002; Fleming & Purshouse, 2002), Simulated 
Annealing (SA) (e.g., Ingber, 1993; Aggelogiannaki & Sarimveis, 
2007), Integrated Controlled Random Search for Dynamic Systems 
(ICRS/DS) by Banga and Seider (1996) and Banga, Irizarry-Rivera, 
and Seider (1998). and the Nested Partitions Algorithm (NPA) by Shi 
and Olafsson (2000, 2009) are gradient independent and have the 
ability to escape local minima. The Genetic Algorithms based on the 
process of survival of the fittest, generate a population of solutions 
called generation at each iteration and evaluate the fitness for each 
solution. For the next iteration, a new population is generated from 
the previous one. The Simulated Annealing based on the physical 
annealing process of solids, generates a solution set at each iteration 
and accepts solutions based on a probability distribution. The 
temperature and the number of solutions accepted decrease after 
each iteration until the algorithm freezes to a single solution. The 
ICRS/DS algorithm reduces the variance and moves the mean of the 
Gaussian distribution based on samples taken from the search space 
during each iteration. The algorithm stops after the change in either 
cost or solution values is small enough. The Nested Partitions 
Algorithm partitions the search space into smaller regions and takes 
random samples from each partition. Based on a performance index 
of the samples. a "most promising region" is selected. Either the 
algorithm further partitions the most promising region or "back­
tracks" to a bigger region if the sample with the best performance 
index is not from the most promising region. The search process is 
like a tree having the smallest most promising region containing the 
global minimum at the maximum depth of the tree. As shown by Shi 
and Olafsson (2000, 2009), the algorithm converges to the global 
minimum with probability one if allowed to reach maximum depth. 
Other strategies that partition the search space and utilize search 
trees are in e.g., Bemporad & Filippi (2006), Johansen (2004) and 
Johansen & Grancharova (2003). These strategies compute the 
control law as an approximate explicit MPC in the parametric sense 
and the partitioning is done in the state space rather than the input. 

In this paper, the Nested Partitions Algorithm is used to solve 
continuous nonconvex optimization problems in NMPC by finding 
the optimal control input directly from the input search space 
rather than in the parametric sense. The Nested Partitions Algo­
rithm was originally designed to solve discrete nonconvex opti­
mization problems and has been applied to problems such as the 
traveling salesman problem. The NPA has been chosen as it can be 
specialized to NMPC by the development of a partitioning scheme 
based on the moving horizon nature of NMPC. The partitioning 
scheme developed here, concentrates search more on the first few 
control moves in the control horizon than the later ones. The 
expected number of iterations taken by the NPA is also calculated. 
Solution time is improved by developing a method to reduce the 
number of iterations taken by the NPA to reach maximum depth. 
This is done by using a good starting point to start the algorithm 
with a smaller most promising region rather than the entire 
search space. As the algorithm is based on taking random samples 
from the search space, it will converge to a point in the vicinity of 
the global solution. In such a situation, the process output may 
not exactly follow the setpoint. To overcome this, a gradient 
based strategy is used with the NPA. The solution quality is 
assessed using the mean absolute error between the solution 
given by the algorithm and the true global minimum. The solution 
is shown to be feasible and asymptotically stable. 

2. Nested partitions algorithm for nonlinear model predictive 
control 

In this section, a brief review of the NMPC problem formula­
tion is given in Section 2.1 with system dynamics, a continuous 
search space, and receding control and prediction horizons. In 

Section 2.2, a brief review of the stability of the NMPC problem is 
given. An overview of the Nested Partitions Algorithm is given in 
Section 2.3. Several schemes are developed to adapt the NPA to 
solve the dynamic NMPC. Using information from the receding 
horizon and that only the first control move of the control horizon 
is implemented at each time step, a new partitioning scheme that 
focuses on the first few control moves in the control horizon is 
presented in Section 2.4. The expected number of iterations taken 
by the NPA is calculated in Section 2.5. To obtain the solution 
before the next time step, a method is presented to improve the 
expected time taken by the NPA to reach maximum depth by 
using a good starting point to reduce the initial most promising 
region in Section 2.6. While solving the optimization problem, the 
NPA gets into the region containing the global minimum but due 
to its discrete sampling nature the NPA may converge to a point in 
the vicinity of the global minimum. A gradient-based strategy is 
used with the NPA to overcome this diffiClllty in Section 2.7. If the 
optimization algorithm cannot converge before the next time 
step, it is terminated with a feasible solution whose quality is 
assessed based on the mean absolute error between the solution 
and the true global minimum in Section 2.8. The algorithm gives a 
feasible solution for NMPC and provides closed loop stability as 
discussed in Section 2.9. 

2.1. Problem fonnulation for NMPC 

In the NMPC problem, the nonlinear discrete-time process 
model used is 

y(k+ 1) = f (y(k), ti(k)), (1) 

where .9 is the predicted output vector and a is the predicted 
input vector. Starting with initial conditions yeO) and u( -1), the 
objective of NMPC is to reduce the error between the process 
outputs and the desired trajectory YsP called output setpoints. This 
is done by applying control inputs u(k) to the process. The control 
inputs are calculated by solving an optimization problem (e.g., 
Long, Polisetty, & Gatzke, 2006; Norquay et al. 1999; Henson, 
1998; Oliveira, Amaral, Favier, & Dumont. 2000; Clarke, Mohtad, & 
Tuffs, 1987) for each time step k over a control horizon M for the 
inputs and a prediction horizon P for the outputs. The optimiza­
tion problem PI< is given as: 

min ik' 
bti(k + i),E[(k),Eu(k) 

Os; i s; M-l 

where 

P-I 
il< = I:: (jI(/(+ i)-Ysp(k+i)/Q(jI(k + i)-Ysp(k+ i)) 

s.t. 

i:= 1 

+ (jI(k + P)-Ysp(k + P)/ Q(jI(k + P)-Ysp(k+ P)) 

M-I 

+ I:: bU(/(+i)TSbu(k+i) 
i= 0 

P-I 

+ I:: RTi';L(k + i)+RTi';u(k+ i), 
i=1 

bUL s; bu(k + i) s; buu for 0 s; i s; M -1, 

5'(/(+ r)-8u(/(+ i) s;Yu for 1 s; i s; P-l, 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 
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where flil(k+il=il(k+i)-il(k+i-1) and Q and S are positive 
semi-definite weight matrices on outputs and control moves, 
respectively. Subscripts Land U on flu. u and Y represent lower 
and upper bounds, respectively. The input constraints are handled 
by calculating the feasible region between the upper and lower 
bounds of the inputs. The constraints on yare treated as soft 
constraints as by Ricker. Subrahmanian. and Sim (1989). Mayne. 
Rawlings. Rao, and Scokaert (2000) and Zheng and Morari (1995). 
The penalty term for the soft constraints is formulated as an exact 
penalty by choosing a reasonably high value for the positive 
weight vector R on the constraint violation Bu and BL (e.g., Santos, 
Biegler, & Castro. 2008; Santos, Afonso. Castro. Oliveira, & Biegler. 
2001; Scokaert & Rawlings. 1999; Kerrigan & Maciejowski. 2000). 
The exact penalty formulation produces the same feasible solu­
tion as the original hard constrained problem when the latter is 
feasible. The exact penalty formulation violates the output con­
straints to produce a solution if the original hard constrained 
problem is infeasible. Output setpoints for which the hard con­
strained problem has infeasible output trajectories are not con­
sidered here. The second term in (3) is the terminal error penalty 
term. If M < P. move blocking is used as by Cagienard. Grieder, 
Kerrigan, and Morari (2007) and Gondhalekar, Imura. and 
Kashima (2009) in which the input moves from M to P-1 are 
kept zero or in other words the input is kept constant. It is the 
nonlinear system model [ that may cause the overall objective 
function to be nonconvex. The NMPC algorithm is given step by 
step as: 

For any time step k 

Step 1: Get output y(k) from the process. 
Step 2: Use a global optimization algorithm to solve the 
optimization problem Pk given by (2)-(8). 
Step 3: Use the first control move to implement the input 
u(k)=il(k)=flil(k)+u(k-1). where u(k-1) is the input applied 
to the process in the previous time step. 
Step 4: Set k=k+ 1 and go to Step 1. 

A review of the stability of the NMPC problem (2)-(8) is 
given next. 

2.2. Stability 

The NMPC formulation in Section 2.1 has been shown to be 
asymptotically stable for example in Santos et al. (2008) where a 
perfect model [with no process disturbances is considered. At 
steady state values (y(k)-Ysp(k).flu(k))=(O.O). the value of[=O. A 
function belonging to class 1-(,,, is defined. A function W(r): 
\R+->\R+. rE\R+. belongs to class Hoc if: (a) W(r) is continuous; 
(b) W(r)=O= r=O; W(r) is nondecreasing; (d) W(r)-> co when 
r-> co. The cost function Jk in (3) belongs to Hoo . Also Jk is 
bounded from below by zero. For stability, the terminal constraint 
y(k+P)-Ysp(k+P)=O is added to the problem. This constraint is 
usually satisfied by choosing a relatively high penalty on the 
terminal error y(k+P)-ysp(/<+P) in (3) or by choosing a suffi­
ciently long prediction horizon P that ensures an admissible 
trajectory to satisfy the terminal constraint. Due to this con­
straint. the solution to problem Pk in (2)-(8) satisfies (y(k+i)­
Ysp(k+i), flil(/<+i))=(O,O) for i '2: p. assuming that (0,0) is within 
the input and output constraints. The globally optimal solution 
for PI, gives a cost value Jk. As a perfect model with no process 
disturbances is considered. the optimal solution to the problem 
Pk at time step k can be used as a starting feasible solution to the 
problem Pk+l at time step 1<+1 giving cost Jk+l' Clearly 
Jk+1 :5;Jk+I' Furthermore. the value Jk+1 can be no greater than 
Jk as the terminal constraint is only to be satisfied after one more 
time step. Substituting zero for the terminal error in the NMPC 

problem and taking the difference betweenJk andJk+1 gives: 

/k-Jk+ 1 '2: (y(k+ l)-Ysp(k+ l»T Q(y(/<+ l)-Ysp(k+ 1» 

+flu(k)TSflu(k)+RT BLCk+ l)+RT Bu(/<+ I), (9) 

where the right hand side of the inequality belongs to class HOO' 
This means that the sequence {Jk} is nonincreasing over N time 
steps. Taking the sum over N time steps: 

N-l 

J'O-J~= L(n-Jk+l) 
k=O 
N-I 

'2: L (y(k+ l)-ysp(/<+ l»TQ(y(k+ l)-Ysp(k+ 1» 
k=O 

+flu(k)TSfluCk)+RT BL(k+ l)+RT Bu(k+ 1». (10) 

and letting N -> OCJ. the term inside the summation after the 
inequality approaches zero meaning Y(k)-Ysp(k)->O. Thus the 
NMPC problem is asymptotically stable. 

2.3. Nested partitions algorithm 

The Nested Partitions Algorithm by Shi and Olafsson (2000, 
2009) starts with a full dimensional search space 0 bounded by 
0 L and 0 u and symmetric and polyhedral, more specifically a 
hyper-rectangle or hyper-cube in shape. At each iteration there is 
a region a. where as 0. called the most promising region that is 
partitioned into Mp equal sized subregions along each dimension. 
The partitioning can be viewed as dividing each dimension of a 
with Mp equally spaced hyper-planes that are orthogonal to that 
dimension. If the number of dimensions is M. then there are 
M· Mp subregions aI, a2 • ...• aM.Mp. The partitions also form 
symmetric and bounded polyhedra (hyper-rectangles or hyper­
cubes). The region 0\a is called the surrounding region. Each of 
the Mp + 1 regions is sampled. Different distributions can be used 
for sampling. The uniform distribution is used here. A perfor­
mance index is calculated for each sample. If the sample with the 
best performance index is from one of the subregions al. a2 • ...• 
aM.Mp. say ai. then ai becomes the most promising region for the 
next iteration and the current most promising region a becomes 
the superregion sea;) of the subregion ai. If the sample with the 
best performance index is from the surrounding region 0\a. then 
the algorithm backtracks and the superregion s( a) of the current 
most promising region a becomes the most promising region for 
the next iteration. The new most promising region is then 
partitioned in a similar fashion. 

From a graph theory perspective. the Nested Partitions Algo­
rithm forms a tree with the algorithm starting with the entire 
search space 0 as the most promising region at depth zero and 
the smallest possible most promising region containing the global 
minimum at maximum depth. Considering each dimension i with 
maximum depth di,max for 0:5; i :5; M-1. if Ri is the size the most 
promising region at d i.max and I E>U,;-E>L.i I is the size of the entire 
search space, then there will be IE>U,i-E>L,iI/Ri regions of size Ri 
along dimension i at di,max, Also, there will be M$max possible 
regions of size Ri at di,max' This means that Mii.max = I E>u,;-E>L,;! I Ri. 
After taking log on both sides and rearranging. the maximum 
depth di.max is determined by: 

d. - r-0g(lE>u,;-E>L.iI/Ri)l 
I,max - log(Mp) . (11) 

For simplicity, assume all dimensions have the same max­
imum depth d max and the same size lE>u-E>d i.e .. E> is a hyper­
cube. As shown by Shi and Olafsson (2000. 2009), the NPA 
converges to the most promising region containing the global 
minimum at maximum depth dmax with probability one. The 
condition on the most promising region at dmax is that it should be 
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small enough that any sample taken from the most promising 
region would have a better performance index than any sample 
from the surrounding region. The Nested Partitions Algorithm 
introduced above is summarized in the following steps: 

Step 1: Initialize the entire search space 0 as the most 
promising region (J. Set initial depth d=O. During 
initialization, the surrounding region 0\(J is empty. 

Step 2: Partition the most promising region (J along all M 
dimensions into Mp equal sized subregions (J1, (J2, ... , 

(JM.Mp' Set d=d+ 1. 
Step 3: Sample all M· Mp partitions and the surrounding 

region 0\(J. 

Step 4: Calculate the performance index for each sample. 
Step 5: Further Partitioning: 

If the sample with the best performance index is from 
one of the subregions (Jj where (JjE{(J1, (J2, ... , (JM.Mp}, 

then: 
(i) Set the current most promising region (J as the 
superregion of (Jj, i.e., 5((Jj)=(J. 

(ii) Set (Jj as the most promising region for the next 
iteration, i.e., (J=(Jj. 

(iii) If d=dmax, then stop. Else go to Step 2. 
Backtracking: 
Ifthe sample with the best performance index is from 
the surrounding region 0\(J then: 
(i) Set the superregion 5((J) of (J as the next most 
promising region, i.e., (J=s((J). 

(ii) Set d = d-1. Go to Step 2. 

Fig. 1 shows the Nested Partitions Algorithm for a 2-dimen­
sional static problem where both dimensions are partitioned 
simultaneously with Mp =2. Backtracking (shown by the red 
arrow) takes place at depth d=3 for the situation when the best 
performance index after sampling is from the surrounding region. 

2.4. Partitioning scheme 

To adapt the NPA to NMPC, a new partitioning scheme is 
developed. For each time step of NMPC, the NPA is used to solve 
the optimization problem (2)-(8). The cost function in (3) is used 
as the performance index. The region 0 is defined as the region 
bounded by ~uu, ~UL' Uu and UL to satisfy (4) and (5). Inside this 
region, the output constraints (6) and (7) are handled through the 
exact penalty function. The region bounded by ~uu and ~UL 
satisfying (4) forms a hyper-rectangle. The feasible region 0 

Fig. 1. Nested Partitions Algorithm with Mp=2 showing partitions at depths d= 1,2, 
3 and 4 for a 2-dimensional search space. The gray area shows the most promising 
region being partitioned. the white region shows the surrounding region and the 
highlighted region shows the most promising region selected to be partitioned in 
the next iteration as indicated by the arrows. The numbers on the arrows show the 
sequence of the iterations. The red dot shows the global minimum point. (For 
interpretation of the references to color in this figure legend. the reader is referred to 
the web version of this article.) 

Step by step calculation of the feasible region: 
1. u(k+n·=<l(k+H)+/HJ(kH) for i=O. 1 and ,J(k-l)'=u(k-l) 
2. uLSU(IC+l)~J(I' 

3. liL~(k)+.6.a(k+l)~1I1· 

4. IIL'SJI(k-l)+b..u(k)+.6.li(k+l)~lIv 

5. tlL-u(k-l)-llfi(k)~b..ii(k+l)~lIl.,-l'(k-l)-llfi(k) 

Samples are taken between: ( max(illIL,tlL -Li(k» ) and ( min(.6.uL,uL -ii(k» ) 
max(l'''L'''L -il,'(k)-u(k-l)) min(iluL'''L -""'(k)-u(k-l)) 

Fig. 2. Calculation of the region e satisfying (4) and (5). The rectangle represents 
the region bounded by LluL and Lluu. where the horizontal and vertical axes 
represent Llu(k) and Llt1(k+ 1). respectively. The white area is the feasible region e 
and the shaded area in blue and red is the infeasble region. The region used for 
sampling is also given. (For interpretation of the references to color in this figure 
legend. the reader is referred to the web version of this article.) 

satisfying both (4) and (5) is calculated by drawing hyper-planes 
representing UL and Uu in this hyper-rectangle. The hyper-planes 
are defined by recursively using the equation u(k+il=u(J<+i­
l)+~u(k+j) for 0:5: j :5:M-1 and u(k-1)=u(k-1). After drawing 
the hyper-planes, the feasible region 0 is a full-dimensional 
polyhedron bounded from all sides by the hyper-planes and ~uu 
and ~UL' Fig. 2 shows the feasible region 0 (shown in white) for 
an NMPC controller with control horizon M=2 starting with an 
initial value of u(k-1)=u(k-1). This way of calculating the 
feasible region 0 is different from the ray-shooting method as 
in Bemporad and Filipi (2006) and Gilbert and Tan (1991) where 
the feasible region is calculated as an approximation. Fig. 2 also 
shows a step-by-step derivation of the equations of the hyper­
planes representing UL and Uu and the region within which the 
samples are taken. 

For problem Pk at time step 1<. only the first predicted control 
move ~u(k) of the optimal solution is actually implemented out of 
the M predicted control moves. As mentioned in Section 2.2, the 
optimal solution to problem Pk at time step k is used as a starting 
feasible solution for problem Pk+l at time step k+ 1. The first 
predicted control move ~u(J< + 1) out of the M control moves of 
the optimal solution to problem Pk+ 1 is implemented at time step 
k+ 1 and so on. This property of the receding horizon in NMPC 
forms the basis of the partitioning scheme for the NPA in which 
more focus is put when partitioning the first few control moves in 
the control horizon than the later ones. 

Let the M control moves ~u(k), ~u(k+ 1) ..... ~u(k+M-1) in the 
control horizon represent an M-dimensional search space. The 
feasible region 0 is a subset of this search space. As partitioning will 
be done along the M dimensions of the control moves, symmetry of 
o is of no concern. Samples are taken only from the region 0 in the 
partitions as calculated in Fig. 2. Any sample not satisfying (6) and (7) 
are penalized by the exact penalty term in (3). Let do, d1, ... , dM _ 1 

represent the partitioning depths of the M control moves, respectively 
with maximum depths do,max, d1•max .... , dM - 1.max, respectively. For 
simplicity assume do.max=dl,max= '" =dM_1.max=dmax. The maximum 
depth dmax is calculated using ~UU-~UL in (11). The hyper-rectangle 
bounded by ~uu and ~UL is the initial most promising region. The 
dimension along the first control move ~u(k) is divided into Mp 
partitions by drawing hyper-planes orthogonal to ~u(k) resulting in 
Mp bounded M-dimensional hyper-rectangles. Samples are taken 
from the subset of the feasible region inside each hyper-rectangle. 
The samples are M-dimensional vectors. The hyper-rectangle with the 
sample having the best value of the performance index becomes 
the next most promising region and the union of the remaining 
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hyper-rectangles becomes the surrounding region. The depths at this 
point are do=l and d1 =0. d2=0 • .... dM _ 1=0. Partitioning is 
continued until !lil(k) has been partitioned to a certain depth. say 
do=no. At this point, the depths of all M control moves are do=no and 
d1 =0. d2=0 • .... dM_ 1 =0.In a similar way using the hyper-rectangle 
representing the most promising region at do=no. the dimension 
along the second control move !lil(k+ 1) is partitioned to a certain 
depth. say d1=nl. At this point, the depths are do = no. d1=nl and 
d2=0. d3=0 . .... dM_ 1=0. Partitioning is continued similarly for the 
remaining control moves until all M control moves have been 
partitioned to certain depths, do=no. d1=nl • .... dM_I=nM_I. To 
put more focus. the first few control moves in the control horizon are 
partitioned to a larger depth than the later ones i.e .• 
no 2 nl 2 ... 2 nM -I' Partitioning is continued by further partitioning 
!lil(k) from do=l1o to do=2no. then partitioning !lil(k+ 1) from d1 =nl 
to d1 =2nl and so on until all M control moves have been partitioned 
to depths do=2no. d1 =2nl • .... dM_ 1 =2nM_l. Using this scheme. the 
control moves in the beginning of the control horizon reach max­
imum depth before the later ones. A control move is not partitioned 
beyond maximum depth even if the later ones still have not reached 
maximum depth. The solution is the sample giving the best perfor­
mance index throughout the partitioning. The algorithm stops after 
maximum depth has been reached for all control moves or is 
terminated to get a solution before the next time step. The NPA with 
this partitioning scheme is summarized in the following steps: 

Step 1: Initialize (J as the region between !luu and !lUL. Set 
initial depths do=O, d1 =0, ... , dM - 1 =0. During 
initialization, the surrounding region is empty. 

while 0 s; i s; M - 1 go from Step2 through Step 6. 
Step 2: If di=dmax then i=i+ 1. Start Step 2 again. Else 

temp=di. 
Step 3: Partition the most promising region (J along 

dimension !lil(k+i) into Mp equal sized subregions 
aI, (J2, ... , (JMp. Set di=di+ 1. 

Step 4: Sample all Mp partitions and the surrounding 

Step 5: 
Step 6: 

region. 
Calculate the performance index for each sample. 
Further Partitioning: 
If the sample with the best performance index is 
from one ofthe subregions (Jiwhere (JiE{(Jl, (J2, ... , 
aMP}' then: 
(i) Set the current most promising region (J as the 
superregion of (Ji, i.e., S((Ji)=O'. 

(ii) Set (Ji as the most promising region for the next 
iteration, i.e., O'=(Ji. 
(iii) If di=dmax or di=temp+ni then i=i+ land go 
to Step 2. Else go to Step 3. 
Backtracking: 
If the sample with the best performance index is 
from the surrounding region 0\0' then: 
(i) Set the superregion s(O') ofthe current most 
promising region (J as the next most promising 
region, i.e., (J =s( 0'). 
(ii) Set di=di-1. Go to Step 3. 

End of while loop 
Step 7: If dj=dmaxVO s;j s;M-l then stop. Else i=O and 

restart while loop. 

The partitioning scheme for an NMPC controller with control 
horizon M=2 and maximum depth dmax=4 is shown in Fig. 3. In 
contrast to the static problem in Fig. 1 where both dimensions are 
partitioned simultaneously and equally (nO=nl), Fig. 3 shows the 
partitioning scheme where both dimensions are partitioned 
sequentially and unequally with no=2 and nl = 1 based on the 
dynamics of NMPC. Control move !lil(k) is first partitioned to 
depth do=2 and then !lil(k+ 1) is partitioned to depth d1 = 1. Then 
Mi(k) is further partitioned progressively to depth do=4. At this 
point a situation is presented in which the best performance 
index after sampling is from the surrounding region and not from 
any of the partitions of the current most promising region. This 
causes the algorithm to backtrack from depth do=4 to the 
superregion at depth do=3. After this !lu(k) is partitioned again 
to depth do=4 and this time the sampling has resulted in 
selecting the correct most promising region. Next !lilU<+ 1) is 
further partitioned to depth d1 =4. It can be seen from Fig. 3 that 
no and nl are less than the maximum depth. In general no, nl, ... , 
nM-l «dmax or in other words, the number of depths through 
which any control move is partitioned each time should be 
significantly less than the maximum depth. The reason behind 
this is that the optimization problem (2)-(8) is based on all M 
control moves and partitioning any control move alone through a 
very large number of depths may cause that control move to 
move towards a value that is away from the global minimum 
causing excessive backtracking. 

Fig.3. Partitioning scheme for Mp=2, dmox=4, 00=2 and nl = 1. Horizontal and vertical sides of the rectangles represent t.il(I<) and t.il(I<+ I), respectively. The blue and red shaded 
areas show the infeasible region and the red dot indicates the global minimum point Sampling is only done in the gray and white areas shown as the feasible region inside the 
current most promising and surrounding regions, respectively. The algorithm is terminated with do=dl =4. As t.il(k) reaches d""", before t.u(/,+ I), the global minimum is trapped 
along the t.i~k) dimension before the t.u(/,+ 1) dimension. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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2.5. Expected number of iterations 

In NMPC, the solution has to be computed within the sampling 
time. Due to this time constraint, the NPA may need to be stopped 
before reaching the maximum depth. This will affect the quality 
of the solution. To reach the maximum depth, the NPA is expected 
to go through a certain number of iterations I, where an iteration 
is when the NPA either further partitions a subregion of the most 
promising region or it backtracks. To get a rough idea of how 
many iterations I the NPA will take to reach maximum depth, the 
expected value of I is calculated. In the following, the expected 
number of iterations to reach maximum depth is first calculated 
for a problem with control horizon one and then generalized for 
problems with control horizon M> 1. 

For a problem with control horizon one starting at depth zero, 
if the algorithm always selects the correct region, i.e., the region 
containing the optimal solution, then there would be no back­
tracks and the NPA will reach maximum depth in dmox iterations. 
This may not always be the case and the NPA may go through 
backtracking in which case the expected number of iterations to 
reach maximum depth depends on the probability p of selecting 
the correct region. Shi and Olafsson (2009) using results from 
Weesakul (1961) and considering the NPA as a random walk, the 
most promising region at dmax as the absorbing barrier, and 
assuming a probability p > 0.5 of moving towards the absorbing 
barrier, give the expected number of iterations to reach dmox as: 

dmax 
E[I] S (2p-1)' (12) 

Similarly, for problems with control horizon M> 1 and max­
imum depth dmax of all M control moves, the NPA will require 
Mdmox iterations to reach the maximum depths when there is no 
backtracking. When there is backtracking, (12) can be extended to 
obtain the expected number of iterations to reach the maximum 
depths as: 

E[I] s ;::~)' (13) 

A complete derivation of the expected number of iterations is 
given by Shi and Olafsson (2009). Based on (13), the number of 
iterations the NPA is expected to take will be between Mdmax and 
Mdmax/(2p - 1). If fewer iterations are allowed, the NPA might only 
reach a depth lower than the maximum depth. The following 
subsection provides a technique on how to reduce the number of 
iterations required to reach maximum depth. 

2.6. Reducing the number of iterations in the NPA 

In MPC, the solution to problem Pk at time step k is used as a 
starting feasible solution for problem Pk+l at time step k+ 1. 
From the NPA point of view, this information can be used as a 
good heuristic to reduce the size of the initial most promising 
region hence having a starting depth greater than zero and in turn 
improving the algorithm's expected time to reach maximum 
depth. Using the solution to problem Pk at time step k as a good 
starting point, instead of using dstart=O as the starting depth and 
the region between Ll.uu and Ll.UL as the starting most promising 
region, respectively the NPA can begin with a starting depth 
greater than zero. The starting most promising region depth 
dstart> 0 contains the neighborhood of the starting point and is 
smaller than the region between Ll.uu and Ll.UL. The feasible region 
is calculated as in Section 2.4. The starting depth can be decided 
heuristically based on the depth at which the NPA was terminated 
in the previous time step or based on experience. From the 
starting depth, the size of the initial most promising region can 
be decided. The number of depths the algorithm has to go through 

by starting at depth dstart> 0 is dmax- dstart. This is less than dmox 

and in turn will improve the expected number of iterations 
required to reach maximum depth. 

2.7. Getting the global solution 

When the Nested Partitions Algorithm is applied to NMPC, it 
searches for the global solution in a continuous space using 
discrete random samples. Due to the discrete sampling nature of 
the NPA, instead of converging to the global solution Ll.u* (dropping 
(k+ i) for 0 sis M - 1 for ease of notation), it will converge to a 
point Ll.u in its vicinity inside the region of attraction A(Ll.u*), where 
A(Ll.u*) s; ® such that a local search ~euristic starting with any 
Ll.uEA(Ll.u*), would yield Ll.u*. Shi and Olafsson (2000, 2009) use a 
local search heuristic within each partition and run it for each 
sample using the sample as the starting point of the search. For 
NMPC, this may not be feasible as it is not known how much time 
will be required especially as the local search heuristic is to be run 
for each sample. To avoid this, the solution obtained from the NPA 
is used as a starting point for a gradient-based approach to solve 
(2)-(8) to form the NPA plus Gradient Search (NPA-GS) to find the 
global minimum Ll.u*. If Q. with depth 4 s dmax is the largest 
possible most promising region such that Q.s;A(Ll.u*), then to 
calculate maximum depth dmox in (11), Rand Mp should be selected 
such that the NPA can easily reach Q. at depth 4 well before the 
next sampling time. Clearly, the most promising region at max­
imum depth containing the global minimum is a subset of Q.. 

Furthermore, as the solution from the NPA is the sample with the 
best cost value throughout the partitioning, the solution is most 
likely already in the vicinity of the global minimum. If time is 
available after reaching 4 then the NPA should be allowed to reach 
maximum depth. The previous subsection provides a method to 
reduce the number of iterations required to reach maximum depth. 
This gives the gradient-based search a better starting point closer 
to the global minimum. As the starting point lies in the vicinity of 
the global solution, the gradient-based algorithm will not require 
excessive computational effort. 

2.8. Solution quality 

As shown in the previous section, sometimes the NPA may 
only be able to reach a depth between 4 and dmax inside the region 
of attraction of the optimal solution. To get the optimal solution, 
the NPA-GS goes through a gradient-based search starting from 
the solution given by the NPA. In deterministic methods, solution 
quality can be assessed by a lower bound, e.g., dual value using 
Lagrange relaxation provides a lower bound to the optimal primal 
value and the percentage difference between the primal and dual 
values is used as a measure of solution quality which is calculated 
along with the solution online. For the NPA-GS, multiple runs 
(Monte Carlo simulations) of the algorithm are performed offline 
in which it is only allowed to reach the depth it is able to reach 
online. The simulations are performed offline as the solution has 
to be applied before the next sampling time and running the 
algorithm multiple times online would not be possible. The 
solution quality is then given as the error between the average 
cost of these runs and the actual global minimum. The actual 
global minimum can also be found offline by running the algo­
rithm for a long enough time e.g., allow ten times more time than 
the time taken by the algorithm online. If the algorithm is run N 
times with solution costs Jn for 1 s n s N, the average cost Jave is 
given by: 

1 N 
Jave = Iii LJn-

"=1 
(14) 
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The mean absolute error (MAE) is given as the absolute of the 
difference between the average cost Jave and the actual global 
minimumJ*: 

(15) 

Furthermore, the standard error (SE) calculated as the root 
mean square ofthe deviation from the actual valueJ* is used as a 
measure of dispersion of the solution from the actual value: 

SE= 1 ~ *2 IV L..., (fn-J ) . 
n=1 

(16) 

The solution quality is affected by depth at which the algo­
rithm stops. It is expected that the greater the depth the 
algorithm is allowed to reach, the better the solution quality 
can be. 

2.9. Feasibility and stability using NPA-GS 

The solution given by the NPA-GS for the NMPC problem in 
Section 2.1 is both feasible and provides asymptotic closed loop 
stability of Section 2.2. The input feasibility is satisfied by 
sampling only in the region within the bounds on the inputs 
and input moves as calculated in Section 2.4. The exact penalty 
approach used in the NMPC formulation provides the same 
output feasible solution as the solution from the original feasible 
hard constrained problem. As discussed in Section 2.6, the NPA­
GS uses the solution to problem PI< with costJ~ at time step k as a 
starting feasible solution to problem 1'k+1 with costJk+1 at time 
step k+ 1. The NPA-GS improves on the starting point to give a 
cost value fl+ 1 :::;;JI<+ I' Using the same arguments as in Section 
2.2,fl+ 1 :::;;fl. This results in a nonincreasing sequencefl which is 
required for asymptotic stability. Furthermore, as the NMPC 
optimization problem is solved directly, the stability analysis in 
Section 2.2 directly applies to NMPC solved using the NPA-GS 
unlike approximate explicit NMPC algorithms (e.g., Bemporad & 
Filippi, 2001; Johansen, 2004; Johansen & Grancharova, 2003) 
where the stability is shown within a tolerance limit due to the 
approximation. 

3. Case studies 

In this section, NMPC is used to control different processes. 
The NPA-GS was implemented in MATLAB® where the fmincon 
function (which uses Sequential Quadratic Programming) of the 
Optimization Toolbox™ was used for the gradient-search at the 
end of the NPA. For comparison with the NPA-GS, the fmincon 
function is also used as a separate gradient-based solver. Three 
examples are presented here, i.e., a single-input-single-output 
model, a continuously stirred tank reactor (CSTR) with Vanne de 
Vusse reactions and a bioreactor. In all the examples, the NPA-GS 
is compared with the gradient-based solver in terms of tracking 
the setpoints and cost. In addition, the first example demonstrates 
solution quality along with the number of iterations taken by the 
NPA, the second example shows the time taken by the solvers to 
solve the problem and the effect of allowing a smaller depth than 
dmax on solution quality, the third example demonstrates the 
control of a more complex system with mUltiple inputs and 
outputs with constraints. 

Example 1. Single-Input-Single-Output Model 

The nonlinear single-input-single-output model used by 
Sriniwas and Arkun (1997) is used here. The model equation is: 

y(1<+ 1) = 1.0+y(I<)u(k-2)-2u(k-l)u(k). (17) 

The cost function to be minimized is: 

p~ M~ 

J= L<Y(1<+I)-Ysp )2+1.5<Y(k+P)-Ysp )2 + LAft(k+i)2, (18) 
i=l i=O 

s.t. 

-0.5:::;;ft(/<+i):::;;1.0 for O:::;;i:::;;M-l, (19) 

-0.5:::;;Aft(/<+i):::;;1.0 for O:::;;i:::;;M-1. (20) 

There are no constraints on the output y. The setpoint Y is 
0.0 and the initial conditions are: y(k)=O.O, u(k-l)=O.O ~nd 
u(k-2)=0.0. The cost function with M= land P=2 for the first 
time step is shown in Fig. 4. The NMPC is applied to the process 
for a simulation time of 20 samples. For the NPA, the starting 
depth dinit=O, maximum depth dmax=8 and the number of 
partitions Mp =2. 

The cost function in Fig. 4 shows that with any starting point 
less than zero, the gradient-based solver will converge to -0.5 
(local minimum) and with any starting point greater than zero it 
will converge to 0.6124 (global minimum). Suppose the starting 
point for the gradient-based solver is -0.1. Fig. 5 shows the 
NMPC results. It can be seen that the controller using the 
gradient-based solver is unable to follow the setpoint as it 
converges to the local minimum. The controller using the NPA­
GS is able to track the setpoint as it is able to find the global 
minimum. For comparison with results by Sriniwas and Arlmn 
(1997), the model is also controlled with M=2 and P=2 as shown 
in Fig. 5. Sriniwas and Arkun (1997) used a conventional QP solver 
and a convex relaxation based global optimization strategy to 
solve this problem. The conventional QP solver with an initial 
condition of -0.1 has been shown to converge to a local 
minimum and hence the controller was unable to follow the 
setpoint. The output y using the NPA-GS is seen to reach the 
setpoint before sampling time 5 compared to the optimization 
approach by Sriniwas and Arkun (1997) which reaches the 
setpoint at sampling time 6. 

The total simulation cost for M=l and P=2 using (18) is 
6.9722 using the gradient-based solver and is 1.4691 using the 
NPA-GS. For M=2 and P=2, the costs using the gradient-based 
solver and NPA-GS are 6.7472 and 1.4561, respectively. This total 

3.2,r-.---.-----,----,----.--.---.r--,------, 

. 2.8 

2.6 

2.4 

..., 2.2 

1.B 

1.6 

1.4 

1·~0·'-;.6:-'----;.0'-:.4-----;-0'-:.2:---~-.."OL.2-.....J0.L4---'0.-6 ---'0.-8 --L---.J1.2 

Fig. 4. The nonconvex cost function for the first time step for the single-input­
single-output model. Vertical lines at -0.5 and 1.0 show constraints on the input. 
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Fig. 5. Closed-loop results for the single-input-single-output model using the 
gradient-based solver and the NPA-GS. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 6. Realized cost for the single-input-single-output example using gradient­
based solver and NPA-GS. (For interpretation of the references to color in this 
figure legend. the reader is referred to the web version of this article.) 

cost using the NPA-GS for M=2 and P=2 is lower than that using 
the solver in Sriniwas and Arkun (1997) where the cost is shown 
pictorially and just for the first and third time steps, the cost is 
approximately 1.5 and 0.4, respectively. The realized cost which is 
the actual cost incurred using only the input used and its 
corresponding output is shown for each sampling time (time 
step) in Fig. 6. The cost using the NPA-GS eventually goes down to 
zero whereas the cost using the gradient-based solver is higher as 
the controller using the gradient-based solver is unable to follow 
the setpoint. 

The expected number of iterations calculated using (12) and 
the number of iterations taken by the NPA to reach dmax=8 to 
solve the NMPC problem (M=l and P=2) for each time step is 
shown in Fig. 7. For (12), p=2/3 (heuristically calculated using 
p=Mp/(Mp+ 1)) is used and the expected number of iterations 

25r---.----.---.---.----.---.----.---.----.---. 
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Sampling Time 

Fig. 7. Number of iterations taken by the NPA to solve the NMPC problem with 
M=1 and P=2 for each time step for the single-input-single-output model. 

Table 1 
Solution quality for NPA-GS for the single-input-single-output example. 

MAE 
SE 

4.802 X 10-9 

2.470 X 10-8 

M=2. P=2 

2.037 X 10-' 
6.443 X 10-' 

comes out to be 24. As mentioned in Section 2.4, the number of 
iterations taken by the NPA to reach maximum depth dmax=8 is 
between 8 and 24. 

The solution quality given in Section 2.8 is calculated by 
running the NPA-GS 10 times. The mean absolute errors and the 
standard errors for the first sampling time are given in Table 1. It 
can be seen from Table 1 that the mean absolute errors are very 
low (virtually zero) for the NPA-GS indicating the high quality of 
the solution. 

Example 2. CSTR with Vanne de Vusse Reactions 

The continuously stirred tank reactor (CSTR) with Vanne de 
Vusse reactions (e.g., Lee, Kaisare, & Lee, 2006; Long et al.. 2006; 
Sistu & Bequette. 1995) is used as the second example. The Vanne 
de Vusse reactions inside the system are: 

A~B~C 

The model for the CSTR based on material balances is given as: 

dCa / k 1 2 dt = (F V)(CaO-Ca)- I Ca- {3Ca' 

dCb dt = kl Ca-k2Cb-(F /V)Cb, 

(21) 

(22) 

where F is the feed flow rate, V is the volume of the CSTR, and Ca 

and Cb are the concentrations of reactants A and B. respectively. 
Constants kl' k2 and k3 are the reaction rate constants. CaO is the 
concentration of A in the feed. The nominal values for k1• k2' k3 
and CaO are given in Table 2. 

---:-:--:-:-.::..;:;--:-:-.:'--.:------
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Table 2 
Nominal parameter values for CSIR 

Parameter Description Value 

K, Reaction rate (h - ') 50 
K2 Reaction rate (h - ') 100 
K, Reaction rate (Lgmol-' h- I ) 10 
CaD Feed concentration of A (gmol L -I) 10 

1.4 
CaO=10 

1.3 
CaO=9 

1.2 

1.1 

0.9 

:J 0.6 
'5 
§ 0.7 
.c 
() 0.6 
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0.4 

0.3 

0.2 

0.1 

0 
0 '50 100 150 200 

FN (per hour) 

Fig. 8. Steady state output concentration Cb versus steady state input F/V of the 
CSTR for different values of input feed concentrations Can. The vertical line at 
200 h -I is an upper bound on FfV. The dashed horizontal lines represent setpoints 
to be used by the controller later on. 

The model is discretized using a sampling time of 0.002 h or 7.2 s. 
The steady state output concentration Cb versus steady state input F/V 
of the CSIR for different values of input feed concentrations Coo is 
shown in Fig. 8. The dashed horizontal lines represent setpoints to be 
used in NMPC later. The points of intersection between the steady 
state input/output curves and the setpoints give the corresponding 
steady state input values required to reach the setpoint 

The cost function used in the controller is: 

P-1 

J = I: Q(i)(jI(k+i)-Ysp(k+i)i +Q(P)(jI(k+P)-Ysp (/<+p»2 
i=l 

M-1 

+ I: S(k).'lu(k + i)2 , (23) 
i=O 

s.t. 

o ~ .'lu(1<+i) ~ 200 for 0 ~ i ~ M-l, (24) 

0~u(k+i)~200 for O~i~M-1. (25) 

There are no output constraints. The input u is F/V and the 
output Y is the concentration Cb• The input weight 5 is 0.0008 for 
all i, output weight Q= 10 for 1 ~ i ~ P-l and the terminal error 
weight is Q(P) = 1 0,000. The control and prediction horizons are 
M= 15 and P=30, respectively. The initial conditions are: 
u=181 h-l, Cb =1.1 gmol L -1 and Ca=6.18 gmol L- 1. The initial 
input feed concentration Coo is 10 gmol L -1 which is changed to 
9 gmol L -1 and 7 gmol L -1 at 0.2 hand 0.35 h, respectively. The 
initial setpoint YsP is 1.1 gmol L -1 which is changed to 
1.0 gmol L -1 and 0.8 gmol L -1 at 0.1 hand 0.5 h, respectively. 

200",=:;:=:=r==~====;-r==~~;z.;;~~;=n f-- -- Gradient-based solver 
! g 150 -- NPA-GS (M=15, P=30) 
&!.c __ NPA-GS (M=1, P=30) 
~! 100 
LL~ 

LL 50 

°0~--~O~.1----~O~.2~--~0~.3~--~0.4~--~0.~5----~0.~6----~0.7 

Fig. 9. Closed-loop results for the CSTR using the gradient-based solver and the 
NPA-GS. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this artide.) 

The NMPC is applied to the process for a simulation time of 350 
samples or 0.7 h. For NPA, dinit=O and dmax=8 for all input moves, 
Mp=4, no=2, n1 =2 and n2, n3, ... , n14= 1. 

The closed loop performance using gradient-based solver and 
the NPA-GS are shown in Fig. 9. Initially both controllers follow 
the setpoint of 1.lgmoIL-1 with u=181h- 1• But when the 
setpoint is changed to 1.0 gmol L -l, the gradient-based solver 
with a starting point of 181 h-1 starts moving the input to 
200 h-l, which from Fig. 8 can only take the output to 
1.062 gmol L -1 and is unable to follow the setpoint. The con­
troller using the NPA-GS is able to move the input from 181 h-1 
towards 25 h-1 which causes the output concentration to tem­
porarily transition away before coming back to the setpoint. Both 
controllers are able to track the setpoint when Coo is disturbed 
from 10 to 9 gmol L -l, When Coo is disturbed from 9 to 
7 gmol L -1, both controllers are unable to track the setpoint of 
1.0 gmol L -l, This is because a value of Cb =1.0 gmol L -1 cannot 
be achieved for Cao =7 gmol L -1 as shown in Fig. 8. Both con­
trollers are able to track when the setpoint is changed to 
0.8 gmol L -1. Long et al. (2006) used a convex enveloping tech­
nique along with branch-and-bound for global optimization to 
control the CSTR. For comparison with results by Long et al. 
(2006), the NMPC problem (23)-(25) is also solved using the NPA­
GS with control and prediction horizons M = 1 and P=30, respec­
tively and the results are shown in Fig. 9. The NPA-GS is seen to 
track all setpoints except for 1.0 gmol L -1 when Coo is 10 gmol L -1. 

The NPA-GS is seen to respond to change in setpoints earlier 
compared the global optimization algorithm used by Long et al. 
(2006). Setpoint tracking from the local solution technique (MINOS 
version 5.51) used by Long et al. (2006) is similar to the results using 
the gradient-based solver in this paper. 

The total cost computed for M=15 and P=30 using (23) is 
4.4154 x 103 for the gradient-based solver and 1.4427 x 103 for 
the NPA-GS. For M= 1 and P=30, the total cost using (23) for the 
NPA-GS is 1.5195 x 103 . For comparison of numerical values of 
cost, the results in Long et al. (2006) could not be reproduced as 
the linearized convex equivalent of the control problem is not 
given. For a sampling time of 7.2 s and a total simulation time of 
0.7 h, a total of 350 problems are solved. Fig. 10 shows the time 
taken by the gradient-based solver and the NPA-GS to compute 



878 M.H.M. Chauhdry, P.B. Luh / Control Engineering Practice 20 (2012) 869-881 

7 ------------7---------------------------------------------------------

Real-time threshold 

50 100 150 200 
Sampling Time 

250 300 350 

Fig. 10. Time taken by the gradient-based solver and the NPA-GS to solve the 
optimization problem at each sampling time M= 15 and P=30. 
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Fig. 11. Solution quality for the CSTR problem with M=15 and P=30. The castr, 
number of iterations, mean absolute error and standard error are shown for the 
NPA-GS to solve the optimization problem at each sampling time. The effect of 
allowing the algorithm to reach different depths on solution quality is shown. (For 
interpretation of the references to calor in this figure legend, the reader is referred 
to the web version of this article.) 

the solution for each sampling time for M=15 and P=30. The 
real-time threshold for this process is 7.2 s. 

Fig. 11 shows the solution quality of the NPA-GS for the 
controller with M=15 and P=30, A total of 10 Monte Carlo 
simulations were performed to calculate the solution quality. To 
give a better insight of solution quality, the number of iterations 
taken by the algorithm is also shown. To see the effect on solution 
quality by only allowing the algorithm to reach a depth (for 
example due to a slower computer) smaller than the maximum 
depth within the sampling time, the algorithm was allowed to 
reach depths 8 and 6 on separate runs. To reach the maximum 
depth 8, the number of iterations in each sampling time is 

between 120 and 200. This is in agreement with Section 2.4 as 
dO,max+'" +d14,max= 15 x 8= 120 and (do.max+"· +d14,max)/ 
(2p-l)=200 (from (13) with a heuristic p=Mp/CMp+ 1)=4/5). It 
can be seen that the mean absolute error with depth 8 is 
negligible compared to the actual cost. Also the standard error 
of the costs from the Monte Carlo simulations is very small 
indicating a very small dispersion around the true value. To reach 
depth 6. which is less than the maximum depth, the number of 
iterations is between 15x6=90 and 15x6/(2x4/5-1)=150. 
The effect of only allowing the algorithm to reach a depth smaller 
than the maximum depth is seen as the mean absolute error and 
the standard error are now higher. But the overall solution quality 
is still quite high as the MAE and the SE are still negligible 
compared to the actual cost. 

Example 3. Bioreactor 

The bioreactor (e.g., Saha, Krishnan, Rao, & Patwardhan, 2004; 
Patwardhan & Madhavan, 1993; Amrit & Saha. 2007), also known 
as the continuous fermenter, is used as the third example. The 
first principle model for this process is given as: 

dX 
dt =-DX+"uc. (26) 

dS 1 
- =D(SrS)--"uc, 
dt Yx/s 

(27) 

dP 
dt = -DP+(IXJ-l+{3)X, (28) 

where P represents the product concentration. X is the biomass 
concentration. S is the substrate concentration. D is the dilution rate 
and Sf is the input feed substrate concentration. Constants IX and {3 
are yield parameters for the product, Yx/s is the cell-mass yield and 
parameter J-l represents the specific growth rate and is given by: 

J-lm(l-/-)S 
J-l = m 2' (29) 

Km+S+k 

where Pm and Km are the product and substrate saturation constants, 
respectively. J-lm is the maximum specific growth rate and K; is the 
substrate inhibition constant. The nominal values of the model 
parameters are given in Table 3. The model is discretized with a 
sampling time of 1 h. The steady state output concentration P versus 
steady state input Sf and the steady state biomass concentration X 
versus steady state input D of the bioreactor is shown in Fig. 12. 

The control objective is to control the outputs P and X using 
the inputs Sf and D while enforcing boundary constraints on p, X 
and state S. The cost function to be minimized is: 

19 

] = L Q(i)CY(k+i)-Ysp(k+i))2 +Q(20)CY(k+20)-Ysp(k+20)i 
1=1 

19 19 

+ I: 10,1.Sr(k+ii+ I: 104MJ(k+i)2+Rp8p,L(k)+Rp8P.u(k) 
i=O i=O 

+ Rx8X,L(k) + Rx8X,u(k) + Rs8s,L (k) + Rs8s,u(k), (30) 

Table 3 
Nominal parameter values for the bioreactor. 

Parameter Description Value 

yX/S Cell-mass yield (gig) 0.4 
A Product yield parameter (gig) 2.2 
B Product yield parameter (h -1) 0.2 
flm Maximum specific growth rate (h -1) 0.48 
Pm Product sanlration canstant (giL) 50 
Km Substrate saturation constant (giL) 1.2 
K, Substrate inhibition constant (giL) 22 
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Fig. 12. (a) Steady state output concentration P versus steady state input Sf of the 
bioreactor for a fixed dilution rate D=0.15 h- 1 with a lower and upper bound of 
2 giL and 40 giL on Sf, respectively. (b) Steady state biomass concentration X 
versus steady state input D of the bioreactor for a fixed substrate feed concentra­
tion 5f=25 giL with a lower and upper bound of 0.05 h-1 and 0.25 h- 1 on D. 
respectively. 

s.t. 

(31) 

(32) 

0:05::; L'l.D(k+i)::; 0.25 for 0::; i::; 19, (33) 

0.05::;D(k+i)::;0.25 for 0::;i::;19. (34) 

(35) 
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Fig. 13. Closed-loop results for the bioreactor using the gradient-based solver and 
the NPA-GS. (For interpretation of the references to color in this figure legend. the 
reader is referred to the web version of this article.) 

-P(k+i)-8P.L::; 0 for 0::; i ::;20. (36) 

X(k+i)-8x.u::; 8 for 0::; i::; 20. (37) 

-X(k+i)-8x.L::; 0 for O::;i::; 20. (38) 

S(k+i)-8s.u::; 25 for 0::; i::; 20. (39) 

-S(k+i)-8s.L::; 0 for O::;i::; 20. (40) 

8P.L.8P.U.8X.L.8X.U.8S,L.BS,u ;0: O. (41) 

The input vector u is (5f • D) and the output vector y is (P. X). 
The input weights are (10. 104) for all i. the output weights are 
Q=(O.012. 0.0012) for 1 ::; i ::; 19 and the terminal error weights 
are Q(20)=(4200, 0.024) and the weights for the exact penalty 
term are Rp=Rx=Rs=5 x 106• The initial conditions are: 
X=4.949 gIL. 5=22.63 gIL. P=17.49 gIL. ,D=0.15 h-1 and 
5f =35 gIL. The NMPC is applied to the process for a simulation 
time of 200 samples or 200 h. The initial setpoint YsP is (17.49. 
4.95) which is changed to (25. 6.73). (5. 1.48) and (15. 4.55) at 
50 h. 100 hand 150 h. respectively. For the NPA. dinit=5. dmax= 10 
and Mp=4 for all input moves, no=2. nl =2 and nz. n3 ..... n19= 1. 
Fig. 13 shows the closed loop performance of the gradient-based 
solver and the NPA-GS. Both controllers follow the setpoints 
(17.49.4.95). (25, 6.73) and (15. 4.55). But when the setpoint is 
changed from (25. 6.73) to (5. 1.48). both controllers cannot bring 
the biomass concentration X to its setpoint value. This is because 
the substrate concentration 5 has reached its upper bound value. 
The Optimization Toolbox™ for MATLAB® has been used by Saha 
et al. (2004) and Patwardhan and Madhavan (1993) to control the 
process without output or state constraints to only one setpoint 
(25.7.3) compared to a variety of setpoints in Fig. 13. 

The total simulation cost using (30) is 1721.2 using the 
gradient-based solver and is 961.8 using the NPA-GS, For com­
parison of numerical values of cost. the results in Saha et al. 
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(2004) and Patwardhan and Madhavan (1993) could not be 
reproduced as the respective models for the bioreactor used in 
their techniques are not completely given. 

4. Conclusions 

The stochastic Nested Partitions Algorithm for global optimi­
zation has been adapted to solve the nonconvex optimization 
problems in NMPC. To adapt, a new partitioning scheme has been 
developed for the NPA. The time the NPA takes to reach maximum 
depth has been improved by using a good starting point to reduce 
the size of the initial most promising region and hence increasing 
the starting depth. Due to its discrete sampling nature, the NPA 
converges to a point in the vicinity of the global minimum, a 
gradient-based algorithm has been used with the NPA to over­
come this. The mean absolute error along with standard error has 
been used as a measure of solution quality. The NPA-GS gives a 
solution that is feasible and provides closed loop stability. The 
NPA-GS has been implemented and. used in NMPC to control 
different processes. The NPA-GS has been shown to better track 
the setpoints compared to solutions from a gradient-based solver 
such as SQP that tends to converge to a local minimum. The NPA 
is shown to work fast enough for real-time control of the 
examples considered in this paper. The solution quality presented 
in Section 2.7 is calculated offline. For future work new techni­
ques can be developed to compute the solution quality online. 
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