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Adaptive General Predictive
Control Using Optimally
Scheduled Multiple Models
for Parallel-Coursing Utility
Units With a Header
An adaptive general predictive control using optimally scheduled multiple models
(OSMM-GPC) is presented for improving the load-following capability and economic
profits of the system of parallel-coursing utility units with a header (PUUH). OSMM-
GPC is a comprehensive control algorithm built on the distributed multiple-model con-
trol architecture. It is improved from general predictive control by two novel algorithms.
One is the mixed fuzzy recursive least-squares (MFRLS) estimation and the other is the
model optimally scheduling algorithm. The MFRLS mixes the local and global online
estimations by weighting a dynamic multi-objective cost function on the membership fea-
ture of each sampling point. It provides better parameter estimation on the Takagi–
Sugeno (TS) fuzzy model of a time-varying system than the local and global recursive
least squares, thus, it is proper for building adaptive models for the OSMM-GPC. Based
on high-precision adaptive models estimated by the MFRLS, the model optimally schedul-
ing algorithm computes the regulating efficiencies of all control groups and then chooses
the optimal one in charge of the multiple-variable general predictive control. Through
the model scheduling at each operation point, considerable fuel consumption can be
saved; meanwhile, a better control performance is achieved. Besides PUUH, the OSMM-
GPC can also work for other distributed multiple-model control applications.
[DOI: 10.1115/1.4006085]
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1 Introduction

The system of PUUH is an important form of combined genera-
tion of electricity and heat in refineries, chemical plants, and paper
mills. A PUUH system is composed of several source devices like
fossil-fuel boilers and several sink devices like steam turbines
connected by a steam header as shown in Fig. 1. The main pur-
pose of PUUH control is to keep balance between the load
demand and the supply of the overall system. Load demands of
PUUH come from two ways: One is the static load demand from
the upper management level to the control level. It can be allo-
cated by a variety of optimization approaches, which we have
studied before [1–3]; another is the dynamic load demand (DLD)
of steam flow from heat users. It is shown as a real-time decrease
or increase of the header pressures proportional to the backpres-
sures of the steam turbines on the header; therefore, an optimal
allocation of DLD is equivalent to an optimal control of header
pressures with the objective to minimize fuel consumption.

For the requirement of stable steam quality, the controller
should keep the measured header pressures at their set points pre-
cisely in steady states and fluctuate shortly and smoothly in tran-
sient processes. However, header pressures are very difficult to
regulate, because they are influenced by multiple sources and mul-
tiple sinks, resulting in a complicated coupled system with long
delays. When a disturbance occurs, it usually takes a PUUH sys-

tem long time to arrive at a new stable state, showing poor stabil-
ity and large fuel consumption. These control problems become
more difficult when DLD varies in a wide range with nonlinear
variations of the coal consumption rates of the boilers, and when
the parameters of PUUH vary slowly in the long-term operation.
Thus far, the header-pressure regulating is a bottleneck in improv-
ing the load-following capability and the generation efficiency of
a PUUH system.

From the literature and large numbers of field operation reports,
we know that the existing header-pressure controllers with the
conventional algorithm do not work well in practice. There have
been some studies on improving header-pressure control in its sta-
bility and reliability [4–7], but none of them consider the optimal
fuel consumptions during their pressure regulation. Therefore, an
improved header-pressure control with the DLD optimal allocat-
ing needs to be developed under the objective of the minimal fuel
consumption currently.

General predictive control is a receding-horizon linear quad-
ratic control law depending on the prediction of the plant’s output
over several steps. It has been very successful in solving the con-
trol problems with long delay, with coupled inputs, and with vari-
able parameters [8–10]. Although general predictive control
algorithm is a linear control law, it can be extended to nonlinear
control by incorporating nonlinear prediction models.

We have proposed a theoretical approach for modeling PUUH
[11]. Because it has some recurrent computing, it is suitable for
building a simulator but not for serving as a prediction control
model. The Takagi–Sugeno fuzzy model is an effective multiple-
model approximate method for modeling complex nonlinear sys-
tems [12]. It has shown its good effects on improving the
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performance of many nonlinear multiple-model control systems
and thus has been widely applied [13–17]. In order to improve the
header-pressure control performance as well as to realize the DLD
optimal allocating of PUUH in wide operation ranges, we will de-
velop an adaptive OSMM-GPC based on the TS fuzzy models in
this paper.

In the novel OSMM-GPC, the general predictive control for
header pressure is improved by two new algorithms. One is the
MFRLS estimation for achieving a high precision of online-
estimated models of nonlinear and time-varying systems. It con-
tributes to getting correct scheduling and predictions in the
OSMM-GPC. Another model, optimally scheduling algorithm
improves the multiple-model control into a distributed multiple-
model control by a two-step model scheduling. It first sorts out
the boiler combination of the highest regulating efficiency from
the TS model set estimated by MFRLS, and then it schedules the
active prediction model by fuzzily weighting the TS models of
the chosen combination. Based on the active prediction model, the
general predictive control algorithm works out the optimal control
instructions and then sends them to the chosen boilers at each
sampling instant. OSMM-GPC can realize the DLD optimal allo-
cating of PUUH by considering both the economy index and regu-
latory index in its two-step model scheduling. It provides a better
multi-objective optimal control solution to distributed nonlinear
systems than other multiple-model control strategies by its more
flexible optimally scheduling algorithm.

This paper is organized in the following way: Sec. 2 describes
the distributed increment-control architecture in which the
OSMM-GPC works. Section 3 describes the modeling approach.
First, there is a brief introduction of the TS model and then the
derivation of the MFRLS algorithm. Section 4 proposes the model
optimally scheduling algorithm first, then it presents the wholly
OSMM-GPC. The simulation experiments in Sec. 5 verified both
MFRLS on the multiple-variable plant and the OSMM-GPC
algorithms.

2 The Distributed Increment-Control Architecture

Figure 1 shows the distributed increment-control architecture of
a PUUH system with n boilers and m steam turbines (n>m).
M1 � Mn denotes the allocated static boiler load (firing rates) and
Dt1 � Dtm the allocated static steam turbine load (steam flow).
They are the basic supply and demand loads, respectively. We
only show their relation to DLD in the architecture and will not
discuss them more. DM1 � DMn denotes the real-time varying
DLD optimally allocated by the DLD optimal controllers or the
optimal header-pressure controllers to be discussed under the
objective of the minimal fuel consumptions.

The DLD optimal controller adopts multiple-variable control
algorithm. Considering the computing complexity, a distributed
control system with several low-dimension DLD controllers is
more proper than one controller for a whole system of PUUH.
The number of controllers depends on the size of a PUUH. Intui-
tively, the DLD optimal controllers of a distributed system can be

set according to the design principle of a PUUH system. It is to
compose the overall system of several flow demand-and-supply
balanceable groups according to the nominated capacities and
locations of devices. A 3-boiler and 2-turbine group is a typically
configured balanceable group. The flow demand-and-supply bal-
ance can be kept within one group. The flow between two neigh-
bored groups is small thus can be treated as a disturbance for each
group in control. Therefore, we can design a distributed control
system for PUUH by setting one DLD optimal controller in each
balanceable group as shown in Fig. 1.

Each DLD optimal controller has multiple inputs and multiple
outputs. In Fig. 1, Pi, i¼ 1, …, nþm� 1, denotes the pressure
measurement on the ith header segment, which is a portion of the
header connected with the ith device. Because they can sensitively
show the unbalance between the load demand and supply in their
group, the variations of Pi on the header segments with steam tur-
bines can be used as the controlled variables of the DLD optimal
control. Obviously, the control variables should be the incremen-
tal firing rate of boilers DMi(k), i¼ 1, …, n. Take a PUUH with
n¼ 3 and m¼ 2 as an example. The inputs of the DLD optimal
controller are P2 and P4, which are the controlled variables. Its
outputs are the increment firing rates DM1(k)–DM3(k) sent to the
boilers 1–3 as the control variables.

Because the control variables are incremental, this distributed
increment-control architecture supports a freely and smoothly
scheduling on control variables among different boilers. There-
fore, we will study OSMM-GPC algorithm on this architecture
which may not only be suitable for PUUH but also for other bus-
topology systems which need distributed multiple-model control.

3 Takagi-Sugeno Fuzzy Modeling With MFRLS

Estimation

The performance of OSMM-GPC largely depends on how pre-
cisely the online-estimated TS model tracks the nonlinear and
slow time-varying system; thus, it is valuable to improve the
online estimation precision of TS models. Many fuzzy clustering
methods have been well established for the estimation of the ante-
cedent parameters of TS models, e.g., fuzzy C-Mean clustering,
Gustafson–Kessel clustering, Gath–Geva clustering, and the
online clustering methods [18–20], thus we will not discuss them
here.

The most widely used estimation method on consequent param-
eters of TS models is the fuzzy least-squares estimation [21].
Although the fuzzy batch least squares for offline estimation have
been well studied [22], the more valuable online estimation
method is the fuzzy recursive least squares (FRLS) for tracking
time-varying parameters of real systems. The existing FRLS algo-
rithms include the global optimal FRLS and the local optimal
FRLS [23]. The former pursues the global fitting but ignores the
interpretability of each local model, whereas the latter has good
interpretability on local linear models but may not achieve the
optimal global approximation. Therefore, both the two FRLS
algorithms do not behave ideally in tracking the time-varying con-
sequent parameters of TS models as seen in the experiments of
Sec. 5. The reason is that they use a fixed tracking objective with-
out considering the varying feature (membership degree) of each
newly coming sampling point in their online learning. If one new
sampling point has a high membership degree in one fuzzy parti-
tion and low membership degrees in other fuzzy partitions, the
point should mainly contribute to the local model learning
because it belongs to a predominant subspace; else, if the point
has the almost even membership degree in every partition, it is
suitable for the global learning. Weighting the two FRLSs and
computing in parameter estimation to improve the precision may
be intuitively thought of, but actually it does not work. Consider-
ing the features of sampling points in online learning, we pro-
posed a novel FRLS on both global and local optimal estimation
objectives. This method uses the feature of each new sampling
point to adjust the objective for the optimal parameter estimations

Fig. 1 PUUH with control system
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at each updating instant. The recursion formula is obtained by
solving a dynamic multiple-objective optimization problem at
each sampling instant. In the novel FRLS, the global and local
FRLSs are mixed by their common covariance matrix, so we
called it the MFRLS algorithm, the formulas were presented in
Ref. [17] without derivation. In this paper, we will give a com-
plete presentation on how to solve the mixed covariance matrix
on the multiple optimal objectives and derive the recursion for-
mula of MFRLS which has not been published before. First, a
brief introduction of TS model will be given before the derivation
of the MFRLS algorithm.

3.1 Takagi-Sugeno Fuzzy Model. TS model is capable of
describing highly nonlinear system using a group of rule-based
models with fuzzy antecedents and functional consequents that
follow the fuzzy inference proposed by Takagi and Sugeno [21].
A typical rule-based TS model is shown as

Ri : If ðw1ðkÞ is Xi;1Þ and … and ðwsðkÞ is Xi;sÞ
Then yiðkÞ ¼ hi;1w1ðkÞ þ…þ hi;swsðkÞ þ hi;sþ1; i ¼ 1; 2;…;Kl

(1)

where Ri denotes the ith fuzzy rule; k is the kth sampling time
instant; Kl is the number of fuzzy rules; Xi,j denotes the antecedent
fuzzy sets, j¼ 1,…,S; w is the input vector, w(k)¼ [w1(k),…,
ws(k)]T[RS, here wj(k), denotes the jth scalar of vector w; hi,j,
j¼ 1,…,Sþ 1, is the coefficients of the consequent polynomials to
be identified; yi is the output of the ith linear subsystem. The out-
put of the TS model is computed by

yðkÞ ¼
Xkl

i¼1

liðkÞðhi;1w1ðkÞ þ � � � þ hi;swsðkÞ þ hi;sþ1Þ (2)

where the normalized firing level of rule Ri is defined as

liðkÞ ¼
xiðkÞPkl

i¼1

xiðkÞ
(3)

xi is the firing degree of rule Ri at instant k, which is defined as
conjunction of respective fuzzy set for this rule

xiðkÞ ¼ Xi;1ðw1ðkÞÞ � Xi;2ðw2ðkÞÞ � � � � � Xi;sðwsðkÞÞ (4)

where Xi,j(wj(k)), j¼ 1, …, S, is the membership degree of wj(k)
in the fuzzy set Xi,j.

3.2 MFRLS Estimation on Consequent Parameters. We
take both the global estimation error and the local estimation error
into account to develop MFRLS for more precise estimation of
consequent parameters. The key point of MFRLS is to deduce the
mixed covariance matrix of its recursive formula associated with
the varying member degree of the latest sampling point at each
sampling instant.

First, we need to construct the same dimensional matrices and
vectors for dynamically building the multi-objective cost function
composed of the global and local estimation errors. Assume, there
are N groups of input–output sampling point data

ðweðkÞ; �yðkÞÞ; k ¼ 1;…;N (5)

where

weðkÞ ¼ ½w1ðkÞ;…;wsðkÞ; 1�
T 2 RSþ1 (6)

and �yðkÞ is the sampled output at instant k. Transform (2) into vec-
tor form on the N groups of data

Y ¼ WTh (7)

where

h ¼ ½h1
T;…; hKl

T�T (8)

hi ¼ ½hi;1;…; hi;sþ1�T; i ¼ 1;…;Kl (9)

W¼

l1ð1ÞwT
e ð1Þ l2ð1ÞwT

e ð1Þ � � � lKl
ð1ÞwT

e ð1Þ
l1ð2ÞwT

e ð2Þ l2ð2ÞwT
e ð2Þ � � � lKl

ð2ÞwT
e ð2Þ

� � � � � � � � � � � �
l1ðNÞwT

e ðNÞ l2ðNÞwT
e ðNÞ � � � lKl

ðNÞwT
e ðNÞ

0
BB@

1
CCA

N�½Kl�ðSþ1Þ�

(10)

Y ¼ ½�yð1Þ;…; �yðNÞ�T (11)

For the purpose of making a multi-objective function of the global
and local estimation errors with respect to h, we construct the fol-
lowing matrix and vectors:

~Y ¼ YT YT � � � YT
� �

T 2 RðN�KlÞ�1 (12)

K ¼ diagðK1; � � � ;KKl
Þ 2 RðN�KlÞ�ðN�KlÞ (13)

X ¼

wT
e ð1Þ
..
.

0 0

wT
e ðNÞ

0 . .
.

0

wT
e ð1Þ

0 0

wT
e ðNÞ

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
¼

xT
1;1

..

.

xT
1;N

..

.

xT
Kl;1

..

.

xT
Kl ;N

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
ðN�KlÞ�½Kl�ðSþ1Þ�

(14)

define Xi¼ [we (1), we (2) ,…, we (N)]T[ RN� (Sþ 1), i¼ 1,…, Kl,
is the ith diagonal block matrix of X; the vector xT

i,j [
R1� [(Sþ 1)� Kl], i¼ 1,…,Kl, j¼ 1,…,N, denotes the row vector of
X including the jth row vector of Xi. ĥ is the estimation of h.

Second, we make a multi-objective cost function based on Eqs.
(5)–(14), by the weighted summation of the squares of the global and
local estimation errors. The mixed objective function is given by

Jm ¼ �lmðkÞðY �WĥÞTðY �WĥÞ þ lmðkÞ ð ~Y � XĥÞTKð ~Y � XĥÞ
(15)

where the first item is the weighted global estimation error and the
second item is the weighted local estimation error; where
�lmðkÞ þ lmðkÞ ¼ 1, and lm(k) is the highest normalized firing level
among all the submodels of the latest sampling point at instant k.

Third, we minimize the objective function (15) with respect to
ĥ and then deduce the recursive formula of MFRLS. The mixed
optimal (least-squares) estimation of h is given by

h ¼ CmðkÞ½�lmðkÞWTY þ lmðkÞXTK ~Y� (16)

CmðkÞ ¼ ½�lmðkÞWTWþ lmðkÞXTKX��1
(17)

where Cm(k) is the [Kl� (Sþ 1)]� [Kl� (Sþ 1)] covariance ma-
trix. In Eq. (17), let CG¼ (wTw)� 1, which is the global estimation
covariance matrix, and the recursive formula of CG is given by

CGðkÞ ¼ CGðk � 1Þ � CGðk � 1ÞWkW
T
k CGðk � 1Þ

1þWT
k CGðk � 1ÞWk

(18)

where Wk
T¼ [l1(k)we

T(k),…, lKl(k)we
T(k)] [ R1� [Kl� (Sþ 1)]. Let

CL¼ (XTKX)� 1, which is the local estimation covariance matrix.
We derive the recursive formula of CL as follows:
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CLðkÞ ¼ ðXTKXÞ�1 ¼
Xk

j¼1

Xkl

i¼1

liðjÞxi;jx
T
i;j

 !�1

¼
Xk�1

j¼1

Xkl

i¼1

liðjÞxi;jx
T
i;j þ

Xkl

i¼1

liðkÞxi;kxT
i;k

 !�1

¼ CL
�1ðk � 1Þ þ

Xkl

i¼1

liðkÞxi;kxT
i;k

" #�1

(19)

Applying the matrix inversion lemma on Eq. (19), we have the re-
cursive formula of CL

CLðkÞ ¼ CLðk � 1Þ �
CLðk � 1Þ

PKl

i¼1

liðkÞxi;kxT
i;kCLðk � 1Þ

I þ CLðk � 1Þ
PKl

i¼1

liðkÞxi;kxT
i;k

(20)

where xi,k is defined in matrix X in Eq. (14). From Eq. (17), we
have

Cm
�1ðkÞ ¼ �lmðkÞC�1

G ðkÞ þ lmðkÞC�1
L ðkÞ

¼ �lmðkÞ � CG
�1ðk� 1Þ þWkW

T
k

� �
þ lmðkÞ � CL

�1ðk� 1Þ þ
Xkl

i¼1

liðkÞxi;kxT
i;k

" #

¼ Cm
�1ðk� 1Þ þ �lmðkÞ �WkW

T
k þ lmðkÞ �

Xkl

i¼1

liðkÞxi;kxT
i;k

(21)

and

Cm
�1ðk�1Þ¼Cm

�1ðkÞ� �lmðkÞ �WkW
T
k þlmðkÞ �

Xkl

i¼1

liðkÞxi;kxT
i;k

(22)

Transform (16) into the summation form and simplify it by

hðkÞ ¼ CmðkÞ � ½�lmðkÞ �
Xk

j¼1

Wj�yðjÞ þ lmðkÞ �
Xk

j¼1

Xkl

i¼1

liðjÞxi;j�yðjÞ�

¼ CmðkÞ � f�lmðkÞ �
Xk�1

j¼1

Wj�yðjÞ þ lmðkÞ �
Xk�1

j¼1

Xkl

i¼1

liðjÞxi;j�yðjÞ

þ�lmðkÞ �Wk�yðkÞ þ lmðkÞ �
Pkl

i¼1

liðkÞxi;k�yðkÞg
¼ CmðkÞ � fCm

�1ðk � 1Þ � hðk � 1Þ þ �lmðkÞ �Wk�yðkÞ

þ lmðkÞ �
Xkl

i¼1

liðkÞxi;k�yðkÞg (23)

Substituting Eq. (22) in Eq. (23), we have

hðkÞ ¼ hðk � 1Þ þ CmðkÞ½�lmðkÞ �Wk�yðkÞ

þ lmðkÞ �
PKl

i¼1

liðkÞxi;k�yðkÞ � �lmðkÞ �WkW
T
k hðk � 1Þ

�lmðkÞ �
PKl

i¼1

liðkÞxi;kxT
i;khðk � 1Þ�

¼ hðk � 1Þ þ CmðkÞf�lmðkÞ �Wk½�yðkÞ � ŷðkÞ�

þ lmðkÞ �
PKl

i¼1

liðkÞxi;k½�yðkÞ � ŷiðkÞ�g (24)

which is shortly written as

hðkÞ ¼ hðk � 1Þ þ CmðkÞf�lmðkÞ �Wk½�yðkÞ � ŷðkÞ�

þ lmðkÞ �
XKl

i¼1

liðkÞxi;k½�yðkÞ � ŷiðkÞ�g (25)

where ŷðkÞ ¼ WT
k hðk � 1Þ is the global estimation of �yðkÞ;

ŷiðkÞ ¼ xT
i;khðk � 1Þ is the ith local estimation of �yðkÞ.

Finally, we have the MFRLS algorithm which is described by
the recursive formulas (18), (20), (21), and (25). Although we
derive MFRLS from the batch global and local least-squares esti-
mations, the resultant formulas can work only with the current
sampling data and their outputs of the previous sampling instant.
In the MFRLS, the firing level of a new sampling point is calcu-
lated and then the maximal one among all the subspaces is chosen
to construct a multi-objective optimization index for updating the
consequent parameters at each sampling step; thus, MFRLS is a
more effective and flexible estimation method than the other two
FRLS.

Based on nonlinear and time-varying prediction models
achieved by the TS fuzzy modeling with MFRLS, we are able to
study the optimally scheduling algorithm on multiple prediction
models for the general predictive control.

4 The OSMM-GPC Algorithm

The purpose of an optimal control of header pressures or the
DLD optimal controller is to track DLD efficiently, while achiev-
ing a better control performance including smaller overshoot, set-
ting time, and steady-state errors on the header pressures. We will
propose the OSMM-GPC to improve the control performance of
header pressures, the DLD-following capability and the economic
profit of PUUH in this section.

Suppose there are n boilers and m steam turbines working in
one balanceable group of PUUH. In most cases, there is n>m,
therefore, a model optimally scheduling algorithm is needed for
selecting the m-most efficient boilers to be the regulating devices
of the m�m general predictive control on the header pressures.
Because of the nonlinearity and time-varying characteristics of
PUUH, the selection should be online executed at each operation
point. As mentioned previously, a smooth switching of control
devices can be guaranteed on the increment-control architecture
in Fig. 1.

The DLD optimal controller shown in Fig. 2 uses the OSMM-
GPC algorithm to implement a distributed control on the pressures
along the header. The OSMM-GPC algorithm has three major
functions including the modeling and online estimating by
Takagi–Sugeno fuzzy modeling with MFRLS, model optimally
scheduling, and multiple-variable general predictive control. The
OSMM-GPC algorithm works in the following procedure:

First, the OSMM-GPC uses Takagi–Sugeno fuzzy modeling to
build C(n, m) groups of m�m TS fuzzy models, where C(n, m) is
the number of m combinations from the set of n boilers; based on
these TS models, C(n, m) groups of adaptive prediction models

Fig. 2 A DLD optimal control system with OSMM-GPC
algorithm
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are online estimated by MFRLS algorithm at each sampling inter-
val. Then the model optimally scheduling algorithm chooses the
optimal one from the C(n, m)-adaptive models on an economic
objective as the active adaptive prediction model. It is used by the
m�m general predictive controller to calculate the control incre-
ment DM of the current sampling instant, where DM denotes
m-dimension vector of the incremental firing rates. The chosen
boilers will add DM to their previous firing rates, and the unse-
lected boilers keep theirs. In Fig. 2, M denotes the n-dimension
vector of firing rates; Pr denotes the m-dimension vector of the set
points of the header pressures; Pm denotes the m-dimension vector
of the header-pressure measurements.

4.1 The Model Optimally Scheduling Algorithm. After the
Takagi–Sugeno fuzzy modeling and the online model updating in
each sampling interval, we have the novel set of C(n,m)-adaptive
prediction models

PM ¼ ½PM1; � � � ; PMCðn;mÞ�0 (26)

Each model in the set has m inputs and m outputs. There are C(n,
m)-input combinations as the control scheme candidates

DMi ¼ ½DMpið1Þ; � � � ;DMpiðmÞ�
0; i ¼ 1; � � � ;Cðn;mÞ (27)

where the suffix pi(j), j¼ 1 ,…, m, is the number of the selected
boiler of the ith scheme in the boiler set. From the identification
of the TS fuzzy model, we know that the inertia influences among
different outputs are very small. Thus, each m-input-and-m-output
model in PM can be approximately described as a group of m-
input-and-1-output models like the following [18]:

PMi: Ai;jðq�1ÞYjðkÞ ¼
Pm
l¼1

Bi;j;lðq�1ÞDMpiðlÞðk � 1Þ
� �

þ ci;j

j ¼ 1; � � �m ; i ¼ 1; � � � ;Cðn;mÞ (28)

where q� 1 is the backward shifting operator, Ci,j is the affine item
from the linearization modeling. Yj(k) is the jth output, and

Ai;jðq�1Þ ¼ 1þ ai;j;1q�1 þ � � � þ ai;j;ni;j
q�ni;j (29)

Bi;j;lðq�1Þ ¼ bi;j;l;0q�di;j;l þ bi;j;l;1q�di;j;lþ1

þ � � � þ bi;j;l;ðml;i�1Þq
�ðdi;j;lþmi;j;l�1Þ l ¼ 1; � � � ;m; j ¼ 1;

� � � ;m; i ¼ 1; � � � ;Cðn;mÞ (30)

Equations (26)–(30) can represent not only the dynamics of the
plant but also the efficiency of each boiler for regulating the pres-
sures at the current operation point. We evaluate the efficiency of
each scheme by the Final Value Theorem. Let each input be a step
signal, and the steady gain of each model is obtained by equating
the operator q� 1 to 1. Because the affine item Ci,j represents an
offset from a linearization center of these submodels, it is point-
less on evaluating efficiency. Thus, we have the regulating effi-
ciency (MPa/(kg/s))[24]

gðPMiÞ ¼
Xm

j¼1

x
j

Ai;jð1ÞPm
l¼1

Bi;j;lð1Þ
; i ¼ 1; � � � ;Cðn;mÞ (31)

where Ai,j(1) and Bi,j,l(1) are obtained by equating the operator
q� 1 to 1 in Eqs. (29) and (30). Their coefficients come from the
online estimation by MFRLS. xj represents the importance of the
jth outputs. Here, xj weights the impacts of these outputs to the
overall regulating efficiency. In the distributed system of PUUH,
xj¼ 1 is suggested because the pressure points along the header
have the equal importance. Equation (31) evaluates the regulating
efficiency of the C(n, m) schemes at current operation point.

The optimization objective of selecting the boiler combination
scheme for the most effective regulating is given by

max
i2f1;���;Cðn;mÞg

gðPMiÞ ¼
Xm

j¼1

x
j

As;jð1ÞPm
l¼1

Bs;j;lð1Þ
; s 2 f1; :::;Cðn;mÞg

(32)

where suppose that the optimal scheme is the sth. The solution of
problem (32) determines which boiler combination scheme should
be adopted to regulate the header pressures at the current opera-
tion point. If a boiler is in the selected scheme, it adjusts its firing
rate at the current time instant according to the instruction from
the OSMM-GPC controller; otherwise, it keeps its previous firing
rate.

As a result of solving problem (32), an inner prediction model
for the general predictive control algorithm is settled according to
the selected scheme. The model of the chosen scheme is given by

PMs:DMs ¼ ½DMpsð1Þ; � � � ;DMpsðmÞ�
0; s 2 f1; � � � ;Cm

n g;
YðkÞ ¼ ½Y1ðkÞ; � � � ;YmðkÞ�;

As;jðq�1ÞYjðkÞ ¼
Xm

l¼1

Bs;j;lðq�1ÞDMpsðlÞðk � 1Þ
� �

þ cs;j;:

j ¼ 1; � � �m; (33)

where PMs means the model according to the sth input scheme
chosen. Then we can use it as the prediction model of the general
predictive controller to calculate new control increment.

In each sampling interval, the OSMM-GPC algorithm first sched-
ules the regulating boiler combination on the objective of the high-
est regulating efficiency at current operation point, and then it
solves a regulatory optimization problem by the multiple-variable
general predictive control algorithm on the selected boilers.

4.2 Multiple-Variable General Predictive Control. The
regulatory optimization problem of PUUH is described as

min J ¼ min

�XN2

j¼N1

½Yðk þ jÞ � wðk þ jÞ�
0
kðjÞ½Yðk þ jÞ � wðk þ jÞ�

þ
PNu

j¼1

DMsðk þ j� 1Þ0 QðjÞDMsðk þ j� 1Þ
�

(34)

s:t: DMs ¼ ½DMpsð1Þ; � � � ;DMpsðmÞ�
0; s 2 f1; � � � ;Cm

n g
YðkÞ ¼ ½Y1ðkÞ; � � � ;YmðkÞ�0 ;

As;jðq�1ÞYjðkÞ ¼
Pm
l¼1

Bs;j;lðq�1ÞDMpsðlÞðk � 1Þ
� �

þ cs;j

j ¼ 1; � � � ;m
Mmin < MPsðjÞ < Mmax

DMmin < DMPsðjÞ < DMmax

(35)

where N1 is the minimum costing horizon; N2 is the maximum
costing horizon; Mmin and Mmax are the minimal firing rate and
maximal firing rate, respectively; DMmin and DMmax are the mini-
mal increment firing rate and maximal increment firing rate,
respectively; k(j) is a output-weighting sequence; Q(j) is a
control-weighting sequence. wðk þ jÞ is the reference sequence
which is obtained from

YrðkÞ ¼ ½Yr;1ðkÞ; � � � ;Yr;mðkÞ�0
wðkÞ ¼ YrðkÞ
wðk þ jÞ ¼ awðk þ j� 1Þ þ ð1� aÞwðkÞ

8<
: j ¼ 1; 2;… (36)

where Yr (k) is the m-dimension vector of the set points of the out-
puts; a 2 ½0; 1Þ is for smoothing the reference sequence. In the
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multiple-variable constrained general predictive control, Y(kþ j) is
the j-step ahead optimal prediction of the output, which is given by

Yiðk þ jÞ ¼ Gjðq�1ÞDMðk þ j� 1Þ þ Fjðq�1ÞYiðkÞ
þ Hjðq�1ÞDMðk � 1Þ i ¼ 1; � � � ;m (37)

Ejðq�1ÞBðq�1Þ ¼ Gjðq�1Þ þ q�jHjðq�1Þ; j ¼ 1; 2;… (38)

where Ej(q
� 1) and Fj(q

� 1) are polynomials uniquely defined given
As,j(q

� 1) and the prediction interval j. They satisfy the identity

1 ¼ Ejðq�1ÞAs;jðq�1Þ � Dþ q�jFjðq�1Þ; (39)

where D¼ 1� q� 1.
This optimization problem including Eqs. (34)–(39) is the descrip-

tion of a multiple-variable constrained general predictive control
with an adaptive prediction model. It can be transformed into the
expression of a standard quadratic programming problem [25] to get
feasible solutions of the firing rate increment DM. Then, the solution
is added into the m boilers selected by the model optimally schedul-
ing algorithm at the current operation point. The other (n–m) boilers
keep their previous firing rates. The architecture of Fig. 1 provides
smooth switching of the control increment among the boilers.

Because a low-dimension multiple-variable OSMM-GPC algo-
rithm takes less computing time, the configuration of such a DLD
optimal controller with the OSMM-GPC algorithm depends on
the size of a PUUH system. If the system is small, one controller
with the multiple-variable OSMM-GPC algorithm can meet its
needs; if the system is large, then it is more proper to set one DLD
controller for each one balanceable group as mentioned in Sec. 2.

5 Simulations and Discussion

In this section, we illustrate OSMM-GPC algorithm on its two
novel components of MFRLS and the model optimally scheduling
algorithm. For clearly showing the tracking performance of
MFRLS, we verify it on a 2-input-and-2-output water tank model
which is an identification bench mark [18]. It has small initial dy-
namics and is sensitive to the noise; thus, it is proper for testing
estimation performance. If an estimation approach can track this
time-varying model well, it must be able to track other slow time-
varying and large-initial plant like PUUH. In the second part, we
will illustrate the effectiveness of the model optimally scheduling
algorithm on a typical PUUH theoretical model [11] with three
boilers and two turbines.

5.1 Verifying MFRLS We illustrate the new MFRLS algo-
rithm using the following nonlinear theoretical model of a
2-input-and-4-output water tank group [5]:

_h1
_h2
_h3
_h4

2
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3
775 ¼

�2:82 0 2:256 0:564
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0 0 �2:82 0
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3
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ffiffiffiffiffi
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pffiffiffiffiffi
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2
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3
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þ

0

0

15:12

0

0

0

0

15:12

2
664

3
775 � u1

u2

	 

(40)

where hi, i¼ 1, 2, 3, 4 denotes the water level in the ith tank; u1

and u2 denote two input flows; all are dimensionless. Using the
Gustafson–Kessel clustering and batch least-squares estimation to
identify the antecedent and consequent parameters of its TS
model, we have the initial TS model of h1 and h2 shown in
Table 1.

For verifying the online estimating performance of MFRLS, we
simulate a time-varying case of the consequent parameters of the
TS model as real changes on the plant in a long-term operation. In
the theoretical model (Eq. (40)), h3 and h4 are the inputs of h1 and
h2. Two kinds of variations are made in Eq. (40) after the 500-step
simulations: one is the ramp change on coefficients of the inputs
and the other is the step change from 1 to 450 s on the input
delays. Both start at 500-step. The modifications on Eq. (40) are
given by

h1ðkÞ¼ h1ðk�1Þ�2:82 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h1ðk�1Þ

p
þð1�0:0005 �kÞ �2:256

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h3ðk�450Þ

p
þð1�0:0005 �kÞ �0:564 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h4ðk�450Þ

p
(41)

h2ðkÞ¼ h2ðk�1Þ�2:82 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2ðk�1Þ

p
þð1�0:0005 �kÞ �0:564

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h3ðk�450Þ

p
þð1�0:0005 �kÞ �2:256 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h4ðk�450Þ

p
(42)

We use the binary pseudo-random sequences as the inputs u1 and
u2, shown in Fig. 3, to stimulate the theoretical model (40) with
above time-varying characteristics. There are major errors
between the outputs of the TS model without online estimation
and the theoretical model. For comparing the tracking capabilities
of each method, we make the online estimations on the conse-
quent coefficients of the TS model of h1 and h2 by the local
FRLS, the global FRLS, and the MFRLS, respectively. The track-
ing outputs are shown in Figs. 4(a)–4(c). The curves composed of
“x” represent the outputs of the TS model, and the real curves rep-
resent the outputs of the theoretical model. Table 2 shows their
mean-absolute errors which are given by

MAE ¼ 1

N

XN

i¼1

jyðiÞ�ŷðiÞj (43)

Obviously, the local FRLS worked better than the global FRLS in
online estimation because it considers more features of the sam-
pling points in the algorithm, but not sufficiently. The tracking
performance of MFRLS is better than the other two in all the
cases. When the input has a large change which means the state
transfers from one subspace into another subspace, MFRLS shows
great advantage over the local FRLS. This will bring advantages
to properly scheduling and smoothly switching in an optimally
scheduling multiple-model control.

5.2 Verifying the Model Optimally Scheduling Algorithm
of OSMM-GPC. Because the performance of general predictive
control with Takagi–Sugeno model for the long delay and nonlin-
ear plants has been extensively demonstrated both in the literature
and practice, the emphasis of this experiment is to verify the effect
of the model optimally scheduling algorithm, i.e., to compare the
two aspects of the fuel consumptions and the dynamic

Table 1 Rules of TS model

R1 If (h1(k� 1) and h2(k� 1) and h3(k� 1) and h4 (k� 1)) are in X1

Then h1(k)¼ 0.411h1(k� 1)þ 0.653h3(k� 1)þ 0.0774h4(k� 1)� 0.0211 and h2(k)¼ 0.176h2(k� 1)þ 0.0843h3(k� 1 )þ 0.873h4(k� 1)� 0.0049
R2 If (h1(k� 1) and h2(k� 1) and h3(k� 1) and h4 (k� 1)) are in X2

Then h1(k)¼ 0.57h1(k� 1)þ 0.3h3(k� 1)þ 0.176h4(k� 1)� 0.0008 and h2(k)¼ 0.596h2(k� 1)þ 0.108h3(k� 1)þ 0.317h4(k� 1)� 0.0256
R3 If (h1(k� 1) and h2(k� 1) and h3(k� 1) and h4(k� 1)) are in X3

Then h1(k)¼ 0.74 h1(k� 1)þ 0.186 h3(k� 1)þ 0.099 h4(k� 1)� 0.0091 and h2(k)¼ 0.717 h2(k� 1)þ 0.118 h3(k� 1)þ 0.175 h4(k� 1)� 0.0101

Note: Xi, i¼ 1, 2, 3, is the fuzzy set.
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performance between the general predictive controls with and
without the optimally scheduling on their prediction models.

We did the experiment on a theoretical model [11] of a typical
PUUH system with three boilers and two steam turbines. The full
steam flow of each boiler or steam turbine in this system is 61
kg/s. First, we obtained three initial groups of 2-input-and-2-out-
put prediction models by TS modeling. At each sampling interval,
the online model identifying the function updated the three groups

Fig. 4 Online estimated outputs of the water levels: (a) global optimal estimation, (b)
local optimal estimation, and (c) mixed optimal estimation

Table 2 MAE of simulations

MAE h1 h2

Global FRLS 0.0523 0.0260
Local FRLS 0.0236 0.0204
MFRLS 0.0174 0.0126

Fig. 3 The inputs of the water levels
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of prediction models by MFRLS to precisely track the slow time-
varying system in practice. Then, the model optimally scheduling
algorithm chose one group with the maximal regulating efficiency
by Eq. (32) among the three groups of models and made it as the
active prediction model of the general predictive controller to cal-
culate the control increment at current sampling instant.

In the experiment, first let the theoretical PUUH model run
over 2000 steps to arrive at an initial steady state, where the
header pressures, Pm2¼Pm4¼ 8.75 MPa, need to be kept as the
set point all along and the opening ratios of the steam turbine
valves, V1¼V2¼ 50% , varied according to the DLD. The DLD
can be simulated in experiments through tuning the two throttle
valves freely. Thus at the 2050th step, let the opening ratio of the
steam turbine valve 1 step from 50% to 70% to simulate the
increase of the DLD; after about 700 steps running under the pres-
sure control, the PUUH arrived at a new stable state, then at the
3500th step, let the opening ratio of the steam turbine valve 2 step
from 50% to 35% to simulate the decrease of the DLD. These var-
iations of the DLD are shown in Fig. 5(a). The three control ways
of OSMM-GPC, GPC with controllable boilers 1 and 2, and GPC
with controllable boilers 1 and 3 were individually implemented
in the experiment.

Integrating the firing rate summation of all the three boilers
from the 2000th step to the 4500th step and comparing the fuel
consumptions among the three control ways produces the results
shown in Table 3. Obviously, OSMM-GPC consumed the least
fuel among the three ways in tracking the same DLD trend of Fig.
5(a). The saved fuel is about 8199 t for 1 year. “�1 ” in Fig. 5(d)
points out the switching of the manipulations between boilers 2

and 3. Because boiler 3 had higher efficiency than boiler 2 in the
range before that point, the two manipulated variables of the
incremental firing rates at each sampling instant were sent into
boilers 1 and 3, meanwhile, boiler 2 kept its constant firing rate; in
the range after that point, the incremental firing rates were sent
into boilers 1 and 2 because boiler 2 had higher efficiency than
boiler 3 then, meanwhile, boiler 3 retained its value. Boiler 1 had
the highest efficiency among the three all along. As a result of ef-
ficient control, the OSMM-GPC shows much better transient per-
formance on Pm2 and Pm4 than the other two ways, i.e., both the
transient curves of Pm2 in Fig. 5(b) and Pm4 in Fig. 5(c) show that
OSMM-GPC control had less overshoot and shorter regulating
time than the other two ways in tracking the same DLD trend of
Fig. 5(a). Figures 5(e) and 5(f) show the firing rates of the fixed
patterns of GPC.

Therefore, we draw a conclusion that the OSMM-GPC can not
only improve the DLD following capability of PUUH on both the
stability and rapidity of the header-pressure control but also
improve the economic profits by saving considerable fuel con-
sumption in its regulating.

Fig. 5 Pressure control performance comparison between the OSMM-GPC
and the standard GPC while tracking DLD

Table 3 Comparison of fuel consumptions

Items Approaches Fuel consumption (kg/2500 s) Firing rate (kg/s)

GPC with boilers 1 and 2 40,525 16.21
GPC with boilers 1 and 3 40,475 16.19
OSMM-GPC 39,825 15.93
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6 Conclusions

For improving DLD-following capability and the economic
profit of a PUUH system, this paper has proposed a distributed
multiple-model general predictive control algorithm OSMM-
GPC. The OSMM-GPC is built on a distributed increment-control
architecture which is proper for flexibly scheduling and smoothly
switching on devices and models. As a comprehensive control
algorithm, the OSMM-GPC has an improved online parameter-
estimation algorithm MFRLS and a model optimally scheduling
algorithm. The MFRLS algorithm can provide precise parameter
estimation on the TS fuzzy model of a time-varying system. It suf-
ficiently considers the membership feature of each sampling point
to mix the local estimation and global estimation together by mak-
ing a dynamical multi-objective cost function. With sufficient use
of the information from sampling data, MFRLS has a better
approximation to the real system than the global and local FRLS.
It is a general parameter-estimation approach for building adapt-
ive models in wide applications.

Based on the high-precision adaptive models, an optimal sched-
uling of control devices and their models can be well executed.
The model optimally scheduling algorithm computes the regulat-
ing efficiencies of all control groups on their adaptive models and
then chooses the optimal one to accept the control signals from a
multiple-variable general predictive controller. Through the
scheduling at each operation point, considerable fuel consumption
can be saved in regulating the header pressures or tracking DLD,
meanwhile, the control performance indexes including overshoots
and regulating time are much better than that of the control with-
out model optimally scheduling as proved in the simulating
experiment.

As a comprehensive control algorithm, the OSMM-GPC is not
only able to improve the control performance of header pressures,
the DLD-following capability, and the economic profit of PUUH
but also can work for a wide range of industry processes which
need distributed multiple-model control.

Acknowledgment

The authors are grateful to the support of the National Natural
Science Foundation of China under Grant Nos. 51106024 and
51036002. The authors also sincerely thank Dr. Xinsheng Lou for
many of his suggestions and encouragements.

References
[1] Pan, L., and Shen, J., 2010, “A Hierarchical Economical Load Dispatch Based

on Flow-Balanced Zones of Parallel Coursing Power Units With a Header,”
Proceedings 53rd ISA POWID Symposium, Summerlin, NV, Vol. 483, pp.
410–418.

[2] Warsono King, D. J., Ozveren, C. S., and Bradley, D. A., 2007, “Economic
Load Dispatch Optimization of Renewable Energy in Power System Using
Genetic Algorithm,” IEEE Proc. Power Tech. Lausanne, 1, pp. 2174–2179.

[3] Chiou, P. J., 2009, “A Variable Scaling Hybrid Differential Evolution for Solv-
ing Large-Scale Power Dispatch Problems,” IET Gener. Transm. Distrib., 3(2),
pp. 154–163.

[4] Majanne, Y., 2005, “Model Predictive Pressure Control of Steam Networks,”
Control Eng. Pract., 13, pp. 1499–1505.

[5] Luyben, W. L., 2004, “Mathematical modeling and control of a multiboiler
steam generation system,” Ind. Eng. Chem. Res., 43(8), pp. 1839–1852.

[6] White, D., 1999, “Robust control of a steam header letdown system,” IEEE
Canadian Conference on Electrical and Computer Engineering, 2, pp.
937–940.

[7] Emoto, G., Tsuda, A., Takeshita, T., Monical, M. T., Nakagawa, S., and Fujita,
K., 1998, “Integrated Large-Scale Multivariable Control and Real-Time
Optimization of a Power Plant,” IEEE Proc. Control Applications, 2, pp.
1368–1372.

[8] Clarke, D. W., Mohtadi, C., and Tuffs, P. S., 1987, “General Predictive
Control-Part II. Extension and Interpretations,” Automatica, 23(2), pp.
149–160.

[9] Clarke, D. W., Mosca, E., and Scattolini, R., 1994, “Robustness of an Adaptive
Predictive Controller,” IEEE Trans. Autom. Control, 39(5), pp. 1052–1056.

[10] Liu, X. J., Guan, P., and Chan, C. W., 2010, “Nonlinear Multivariable Power
Plant Coordinate Control by Constrained Predictive Scheme,” IEEE Tran. Con-
trol Syst. Technol., 18(5), pp. 1116–1125.

[11] Pan, L., and Shen, J., 2010, “Study of Approximate Distributed Dynamic Model
of Multisource and Multi-Sink Steam Manifold System of Thermal Power
Plant,” Chem. Eng. Commun., 197(2), pp. 204–212.

[12] Li, N., Li, S. Y., and Xi, Y. G., 2004, “Multi-Model Predictive Control Based
on the Takagi-Sugeno Fuzzy Models: A Case Study,” Inf. Sci., 165, pp.
247–263.

[13] Narendra, K. S., Balakrisham, J., and Ciliz, M. K., 1995, “Adaption and Learn-
ing Using Multiple Models, Switching and Tuning,” IEEE Control Syst. Mag.,
15(3), pp. 37–51.

[14] Prasad, G., Swidenbank, E., and Hogg, B. W., 1998, “A Local Model Networks
Based Multivariable Long-Range Predictive Control Strategy for Thermal
Power Plants,” Automatica, 34(10), pp. 1185–1204.

[15] Habbi, H., Zelmat, M., and Bouamama, B. O., 2003, “A Dynamic Fuzzy Model
for a Drum-Boiler-Turbine System,” Automatica, 39(7), pp. 1213–1219.

[16] Kallapa, P., and Ray, A., 2000, “Fuzzy Wide-Range Control of Fossil Power
Plants for Life Extension and Robust Performance,” Automatica, 36(1), pp.
69–82.

[17] Pan, L., Shen, J., and Luh, P. B., 2010, “A Mixed Fuzzy Recursive Least-
Squares Estimation for Online Identification of Takagi-Sugeno Models,” Pro-
ceedings IEEE Conference on Progress in Informatics and Computing, Shang-
hai, CN, Vol. 1, pp. 326–330.
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