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An Effective Subgradient Method for Scheduling a
Steelmaking-Continuous Casting Process
Kun Mao, Quan-Ke Pan, Tianyou Chai, Fellow, IEEE, and Peter B. Luh, Fellow, IEEE

Abstract—The steelmaking-continuous-casting (SCC) process,
which includes steelmaking, refining and continuous casting, is
one of the major bottlenecks of iron and steel production. Efficient
and effective scheduling of this process is essential to improve
the productivity and reduce the production costs of the entire
production system. We present a time-index formulation for this
scheduling problem and a Lagrangian relaxation (LR) approach
based on the relaxation of the machine capacity constraints. The
relaxed problem is solved using an efficient polynomial dynamic
programming algorithm. The corresponding Lagrangian dual
(LD) problem is solved using a deflected conditional subgradient
level method. Unlike the conventional subgradient algorithms for
the LD problem, our method guarantees convergence using the
Brannlund's level control strategy to replace the strict conver-
gence condition that the optimum of the dual problem is known
a priori. Furthermore, our method enhances the efficiency by
introducing a deflected conditional subgradient to weaken the
zigzagging phenomena that slows the convergence of conventional
subgradient algorithms. The computational results demonstrate
that the approaches can quickly obtain high-quality solutions and
are notably promising for the SCC scheduling.

Note to Practitioners—Efficient and effective SCC schedule is
vital for the manufacturing system of iron and steel production.
Unfortunately, the scheduling is extremely difficult because of its
combinatorial nature and practical complex constraints such as
job grouping constraints, precedence constraints, different trans-
port time, and setup times. To obtain high-quality solutions within
an acceptable computational time, we can use a problem-oriented
approach, which can be the LR. However, there are two deficien-
cies in this approach: its empirical termination criteria, such as
maximal iteration number or running time, which make it diffi-
cult to find a golden rule for various problems, and the inefficiency,
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which is caused by the so-called zigzagging phenomena. To over-
come these deficiencies, this paper develops an effective subgra-
dient method for SCC scheduling based on the machine capacity
relaxation. This method gives an objective termination criterion
based on the convergence condition of the method, and improves
the efficiency based on a new search direction or a new subgradient.
Then, the work shows how this method can be applied to solve an
SCC scheduling problem. The computational results confirm their
effectiveness and efficiency. The approaches can also be applied to
other similar production scheduling problems.
Index Terms—Hybrid flowshop, Lagrangian relaxation, manu-

facturing system, scheduling, subgradient optimization.

I. INTRODUCTION

T HE iron and steel industry plays an important role in
modern global economy by providing raw materials

for many other industries such as machinery production,
automobiles, aircrafts, housing and food services, etc. The
manufacturing process of the iron and steel production
is a high-temperature and high-weight material flow with
complicated technological process, including iron-making,
steelmaking-continuous casting (SCC), and steel rolling. To
head towards continuous, fast and automated process along
a large infrastructure to attain different types of high-quality
and low-cost products, modern iron and steel companies use
the computer integrated manufacturing system (CIMS) to
improve the productivity, reduce the production costs, and
enable efficient material and energy utilization [1]. To satisfy
the fluctuating demands for different types of products, various
rolling mills in the steel-rolling phase have been designed with
sufficient production capacity. Because SCC is a complicated
technological multistage process, which requires expensive and
energy-intensive equipments that continuously run, its capacity
is always below the actual capacity of the steel-rolling phase.
Thus, the SCC process is a bottleneck in the iron and steel
production. The effective and efficient scheduling of the SCC
process is a vital component in improving the productivity
of the entire production system. An efficient and effective
scheduling algorithm is also important for the CIMS system.
Optimal scheduling of the SCC process can produce obvious

benefits such as profit growth, production cost saving, material
and energy consumption reduction, and customer satisfaction
improvement. However, the SCC scheduling is extremely com-
plicated because of its combinatorial nature, complex practical
constraints, strict requirements on material continuity and flow
time, and technological requirements to ensure the practical fea-
sibility of the resulting scheduling. It is difficult to obtain high-
quality solutions within acceptable computational times. Al-
though the experience-based manual scheduling system and in-
formal coordination perform well in some situations, they are

1545-5955 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



MAO et al.: AN EFFECTIVE SUBGRADIENT METHOD FOR SCHEDULING A SCC PROCESS 1141

restricted to simple manufacturing processes and small-scale
problems.
Indeed, the SCC scheduling problem is composed of some

nice mathematical structures that are coupled with certain com-
plicated constraints that make any solution procedure difficult.
The LR approach can decouple these complicated constraints
such as machine capacity constraints, and exploit the special
structures to solve the problem. Specifically, the LR approach
relaxes the coupling constraints of the scheduling problem with
Lagrangian multiplies. Then, the relaxed problem can be de-
composed into tractable subproblems. The corresponding dual
problem, which is called Lagrangian dual (LD) problem, can be
solved using subgradient optimization methods, where a sub-
gradient vector is obtained by optimizing the relaxed primal
problem, and the multipliers are updated iteratively along the
direction of this subgradient vector. At the end of each multi-
pliers updating iteration, a heuristic is applied to obtain a fea-
sible one from the relaxed problem solutions. At the termination
of the subgradient optimization methods, the best feasible solu-
tion is chosen as the solution to the primal problem. The dual
theory guarantees that the solution of the LD problem can pro-
vide the lower bound of the primal problem, whereas the best
feasible solution offers an upper bound of the primal problem
[2]. The LR approach has emerged as a practical approach for
various scheduling problems such as single machine scheduling
problem [3], parallel machine scheduling [4], flowshop sched-
uling [5], jobshop scheduling [6], [7], hybrid flowshop [8], [9],
etc. Some researchers such as [10] and [11] applied the LR ap-
proach to the SCC scheduling problem under different produc-
tion environments based on the machine capacity relaxation.
The successful application of the LR approach for many

combinatorial optimization problems including scheduling
problems, can be traced back to the pioneering works of Held
and Karp on the traveling salesman problem [12]. However,
a major challenge in the LR approach is to effectively and
efficiently optimize the LD problem, which is nondifferentiable
and piecewise affine [2]. The subgradient optimization method
is a commonly used method for the LD problems because of its
simplicity and low computational complexity. However, there
are two major drawbacks to the pure subgradient method: the
strict convergent condition that the optimum of the LD problem
must be known in advance [2], and the slow convergence,
which is mainly caused by the so-called zigzagging phenomena
[13].
For the first drawback, most LR approaches for scheduling

problems use an empirical termination criterion such as max-
imum iteration number or maximum running time. It is difficult
to find a golden rule to determine a suitable termination crite-
rion for various scale problems. Some researchers proposed al-
ternative convergence conditions based on various selections of
step-length methods [14]–[17]. However, these methods often
come at the cost of sophistication, which hinders potential ap-
plications. For the second drawback, various search-direction
methods have been developed to improve the convergence by
weakening the zigzagging phenomena [13], [18]–[20]. How-
ever, these methods cannot fully handle the zigzagging prob-
lems. Unlike the above methods, [21] developed a surrogate
gradient method where a subgradient direction can be obtained
without optimizing all subproblems. Later, [22] extended this

method to a surrogate subgradient framework and showed that
it has similar properties to those of the subgradient algorithm.
Therefore, like the subgradient method, the surrogate subgra-
dient also faces the first drawback. Recently, [23] combined the
constraint programming and extended subgradient information
to improve the LR convergence for production scheduling.
Motivated by the above work, we develop an efficient sub-

gradient method for the SCC scheduling problems based on the
LR approach. To replace the strict convergent condition, the
method dynamically adjusts the overestimation of the optimum
of dual problem, which is indeed the Brannlund's level control
strategy [15], [16]. Furthermore, it introduces a deflected con-
ditional subgradient to improve the convergence. The details of
the method and the proof are provided in Section IV and the
Appendix, respectively.
The remainder of this paper is organized as follows.

Section II describes the SCC process and briefly reviews the
SCC scheduling methods. The relaxation method is described
in Section III. Computational experiments and comparisons on
various scale problems are provided in Section V.

II. FORMULATION OF THE SCC SCHEDULING PROBLEM

A. The Production Process of Steelmaking-Continuous
Casting (SCC)
SCC processes the hot metal to steel with a well-defined

chemical composition and solidify the steel to slabs. This
process consists of three stages: steelmaking, refining and
continuous casting. Each stage has multiple parallel identical
machines. We call the produced molten iron in the same furnace
a charge or job. All jobs follow the same production flow from
steelmaking to continuous casting. At each stage, a job cannot
be simultaneously processed by more than one machine, and a
machine can process at most one job at a time. Job processing
also cannot be interrupted. The transportation times between
any two machines may be different because of the different
distances. A set of jobs must be contiguously processed on
the same caster at the last stage because of technological con-
straints. A set of jobs is called a cast or batch in the scheduling
system. There is setup time between two adjacent batches on
the same caster. The operation sequence of the jobs in a batch
is predefined, and the machines for each batch are known.
The SCC process can be viewed as a complex hybrid flow

shop (HFS) with the following features: job grouping and
precedence constraints, different transportation times and setup
time constraints on the machines of the last stage. This paper
aims to minimize the total weighted completion time and the
total weighted job-waiting time. The minimization of the total
weighted completion time helps reducing the production cost,
the work-in-process inventory level, and the delivery tardi-
ness of final products, whereas the minimization of the total
weighted job-waiting time reduces the energy consumption and
provides the continuity of the production process.
For the complexity, [24] showed that the problem

(two-machine flow shop problem to minimize the sum of com-
pletion times of all jobs) is strongly NP-hard. Our scheduling
problem is much more complex; we can conclude that the
considered problem is also strongly NP-hard. As a complex
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case of HFS, the SCC scheduling problems have been studied
using various techniques considering different real-world pro-
duction environments. Several recent comprehensive reviews
on production planning and scheduling techniques for steel
production can be found in [25]–[27]. The methods for SCC
scheduling problems can be broadly divided into three cate-
gories: mathematical programming, heuristics, and artificial
intelligence. For the mathematical programming methods,
[1] combined linear programming and heuristic to address a
realistic case of SCC scheduling. For the heuristics, [28] used
a combinatorial auction-based approach to a three-stage HFS
of SCC. Reference [29] developed a unit-specific event-based
continuous-time mixed-integer linear optimization model for
the SCC scheduling problem. For the artificial intelligence
methods, [30] combined ant colony optimization and nonlinear
optimization methods for a three-stage SCC process. Recently,
[27] proposed an effective artificial bee colony algorithm for a
real-world HFS problem in steelmaking process.
It is worth noting that the above literature assumed the trans-

portation times among the machines are the same. However, in
practice, the distances among themachines are different because
of the shop layout, which always leads to different transporta-
tion times among the machines. The transportation times may
affect the starting times of the downstream operations, particu-
larly the continuous-casting operation in the last stage, and the
entire schedule. Therefore, we consider different transportation
times among the machines in this paper.

B. Mathematical Formulation of the SCC Scheduling Problem

This paper uses a time-indexed formulation [31] to model the
scheduling problem. In this formulation, the planning horizon is
discretized into the periods , where period starts at
time and ends at time .
1) Notation: This notation describes the indices, sets,

number of elements, fixed parameters, and variables.
Sets and number of elements

number of available machines at stage ;

set of indices of all jobs, is the number of all
jobs;

set of indices of the th batch, ,
where is the total number of batches;

, for any
; ;

set of indices of all batches on the th machine at
the last stage;

index of the last job in the th batch,
;

index of the last batch on the th machine
at the last stage,

,
where is the total number of stages. Then,

;

the th route for a job,

. For instance, if job is processed
following route , it will be processed on
machine at stage .

: total number of time periods in the planning
horizon.

Data or fixed parameters

processing time of job at stage ;

transportation time from the th machine of
stage to the th machine of stage ;

transportation time from stage to stage
in the th route for a job,

;

setup time between two adjacent batches on the
same machine at the last stage;

penalty coefficient for the waiting time of each job
between stage and stage ;

penalty coefficient for the completion time of
each job at stage .

Decision variables

0/1 variable, which is equal to one if and only if
job at stage starts at time period ;

0/1 variable, which is equal to one if and only if
job is processed following the th route;

: completion time of job at stage .

2) Mathematical Model: With the above symbols, the com-
plex HFS scheduling problem is formulated as follows.
Objective function:
The objective function minimizes the total weighted comple-

tion time of each job and the job waiting between two adjacent
operations, which is provided as follows:

(1)

Constraints:
• Using the time index variables, the completion time of job

at stage can be written as

(2)



MAO et al.: AN EFFECTIVE SUBGRADIENT METHOD FOR SCHEDULING A SCC PROCESS 1143

• Each job can start at exactly one particular time

(3)

• For two consecutive operations of the same job, an opera-
tion can only start when its preceding operation has been
finished. In addition, the transportation times between two
machines are different

(4)
• A job is processed following via one route:

(5)

• The adjacent jobs in the same batch must be processed
consequentially without waiting time at the last stage

(6)

• There is setup time between two adjacent batches to change
equipment on the same machine in the last stage

(7)

where
.

• The number of jobs that are simultaneously processed at
time period cannot be greater than the total number of
available units. This constraint is the machine capacity
constraint

(8)

where .
• The variables must hold for the following constraints:

(9)
(10)
(11)

Remark 1: It is worth noting that our formulation does not
introduce the big-M method to describe the machine capacity
constraints or operation precedence constraints as in [8], [10],
[11], and [27]. The big-M method to formulate this scheduling
problem involves two big-M constraints: the operation prece-
dence constraints because of different routes and the machine
capacity constraints. In this case, it is not easy to handle the
relaxed problem with the relaxation of machine capacity con-
straints because the big-M constraint remains. According to the
computational results in [32], the linear programming relaxation
of the time-index formulation usually produces tighter lower
bound than the big-M formulations. For the same formulation,

the LR always produces tighter lower bound than the linear pro-
gramming relaxation [2], so the LR of the time-index formula-
tion may produce tighter lower bound than the big-M formula-
tion. Based on these observations and results, we prefer to adopt
the time-index formulation.

III. SOLUTION METHODOLOGY

A. Lagrangian Relaxation
There are two common relaxation strategies: machine ca-

pacity relaxation and operation precedence relaxation [33]. For
themachine capacity relaxation in the abovemodel, themachine
capacity constraints (6)–(8), which couple different jobs on the
same machine, can be relaxed to decompose the LR problem
into job-level subproblems. For the operation precedence relax-
ation, the operation precedence constraints (4) can be relaxed
to decompose the LR problem into complicated parallel
machine scheduling problems. However, the parallel machine
scheduling problem is NP-hard for in general [34], which
implies that the subproblem is also NP-hard. Hence, this paper
adopts the machine capacity relaxation as follows.
By relaxing constraints (6)–(8) with Lagrangian multipliers

, nonnegative multipliers , and nonnegative La-
grangian multipliers , respectively, we can obtain the
following LR problem:

where was previously provided and

(12)

(13)

(14)

where

, subject to (2)–(5), (9)–(11), and

(15)
(16)
(17)

Here, is a vector of Lagrangian multipliers
. As a function of the multipliers, , is

the LR problem. The corresponding LD problem is

subject to (2)–(5), (9)–(11), and (15)–(17).
For a given multiplier , the LR problem can be decomposed

into the job-level problems

(18)
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The subproblem for job is given as follows:

subject to (2)–(5) and (9)–(11), where

(19)

(20)

(21)

(22)

(23)

where

and
.

B. Valid Inequalities

In the above relaxation strategy, because of the different
transportation times between two machines in constraints
(4), the continuous-casting constraints (6)–(7), which adjoin
different jobs on the same caster, have to be relaxed to decom-
pose the relaxed problem into job-level scheduling problems.
If we did not relax constraints (6) and (7), we may obtain a
tighter valid condition for the LR by simplifying constraints
(4). One possible method is to replace constraints (4) with the
minimum-transportation-time constraints (24) by solving the
following linear programming (LP) problem:

subject to (6), (7), (9), and

(24)

where .
Then, using the solution of the LP problem, we can derive the

following valid inequalities.

Proposition 1: Let be the solution of the LP
problem, then the solutions of the primal problem satisfy

(25)

Remark 2: Because the relaxed problem does not consider
the continuous-casting constraints (6) and (7), multiple jobs in
a batch may be processed on the same caster in the same time
interval in the relaxed problem, which violates the continuous
casting constraints (6) and (7). To reduce this violation, we
added valid inequalities (25) by solving an LP problem con-
sidering the continuous casting constraints. In other words, the
solution of the primal problem satisfies the valid inequalities
(25), whereas the solution of the relaxed problem may not.

C. Solution of the Subproblem

Although there are only precedence constraints in the sub-
problem , the transportation times between two machines
are different. We must compute the optimums of the subprob-
lems corresponding to different routes and choose the best one.
Fortunately, the number of machines at each stage is small in
practical production. The number of different routes for a job

is . For a given route, the subproblem is a

tractable job-level problem, which can be solved using a back-
ward dynamic programming [6]. We introduce the following
symbols to describe the dynamic programming algorithm.
Let be the cost to start the operation of job at stage
at time period such that

where

.
Let be the optimal criterion value of state

for the operation of job at stage . Then, for each route
, the backward dynamic programming recursion for each job-

level subproblem is expressed as

(26)

(27)

where , and
for .

Let , then

(28)

From the dynamic programming approach (26)–(27), we
know that the complexity to compute is . The
overall complexity is then .

D. Construction of a Feasible Solution to the Primal Problem

The solution of the dual problem is usually associated with
an infeasible schedule because some of the relaxed constraints
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cannot be satisfied. Based on a solution of the relaxed problem, a
two-phase heuristic is presented to construct a feasible solution.
In the first phase, the jobs that are processed on the same

caster follow the same route. Then, the route for each job is
determined by minimizing the sum of the transportation time
of all jobs, which can be solved using an enumeration method

with time complexity . This phase can deter-

mine the variables and the jobs that are processed on each
machine.
In the second phase, the solution of the relaxed problem is

adjusted to ensure that the precedence constraints among the
jobs on each machine are satisfied. In stage ,
the processing order of the jobs that are processed on the same
machine is identical to the ascending order of the starting time

of the LR problem. For example, because
the jobs on each machine is
known according to the first phase, the processing sequence of
jobs in is according to the ascending
order of their starting times of the LR problem. Then, the jobs
satisfy the following precedence constraints:

(29)

Thus, we have determined the route and the machine
capacity constraints (29), so the completion time of each
operation can be obtained by solving a linear programming
problem subject to constraints (4), (6), (7), (9), and (29).

IV. SUBGRADIENT OPTIMIZATION METHODS

Before providing our improvements, we first introduce the
conventional subgradient optimization algorithms for the LD
problem as follows:

(30)

where is the subgradient of
and .

In LR schemes, only one subgradient of at is immedi-
ately available, i.e., let , where

corresponds to the inequality constraints and cor-
responds to the equality constraints.

is the corresponding multiplier with inequality con-
straints such as the machine capacity constraints (4) and the
setup time constraints (7), is the corresponding multiplier
with equality constraints such as the continuous casting con-
straints (6), is the number of inequality constraints, and
is the number of equality constraints.
The convergence of the conventional subgradient algorithm

is usually slow because of two types of zigzagging phenomena:
interior zigzagging and boundary zigzagging phenomenon. The
former type occurs in the interior area of the feasible region,
whereas the other occurs at the boundary of the feasible region.
The major cause of the first zigzagging phenomenon is that the
current subgradient vector forms an obtuse angle with the pre-
vious direction of motion [18] (as shown in Fig. 1), whereas the
second zigzagging phenomenon occurs because the subgradient

Fig. 1. Interior zigzagging phenomenon.

Fig. 2. Boundary zigzagging phenomenon.

are almost perpendicular to the “face” of the feasible region,
which is the tangent cone of the feasible region [20] (as shown
in Fig. 2). In this case, the iterate points may be almost fixed,
which results in notably convergence. Most existing methods
such as [18], [20] only consider one type of zigzagging phe-
nomenon. This paper develops a deflected conditional subgra-
dient method to handle the two types of zigzagging phenomena
in a unified framework.

A. Deflected Conditional Subgradient

1) Conditional Subgradient: In the conventional subgradient
method, the search direction did not consider the feasible region
of the multipliers such as non-negativity, which may cause the
iterate point to reach beyond the boundaries and may be almost
perpendicular to the “face” of the feasible region, which is the
tangent cone of the feasible region (as shown in Fig. 2). The
subgradient is an inefficient search direction at this moment. To
avoid such invalid search, we must generalize the definition of
the subdifferential considering the feasible region. The subdif-
ferential of at is defined as

where . The generation of subdifferential is the
conditional subdifferential

, the element of which will be referred to as the con-
ditional subgradients. Obviously, for all

.
Based on the characterization of the conditional subdifferen-

tial [35] and the projection method [20], we can calculate the
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conditional subgradient as follows. For convenience, we denote
and .

Proposition 2: The conditional subgradient of can
be given as follows:

(31)

where

and is the tangent cone of at .
Remark 3: Interestingly, the formulation of the conditional

subgradient is identical to the modifications of the projections
of subgradients in [36]–[39], which can explain that why their
modifications can speed up the convergence of the pure subgra-
dient optimization method.
2) Deflected Subgradient: In the conventional subgradient

method, an unpleasant behavior is that the two adjacent subgra-
dients form an obtuse angle in iterations (as shown in Fig. 1),
which implies that the search is inefficient. To improve the ef-
ficiency, we can deflect the subgradient direction whenever it
forms an obtuse angle with the previous stepping direction [18]
proposed a modification of the pure subgradient method, where
the subgradient is replaced by a deflected subgradient

, where is called a deflection param-
eter and for . Thus, the deflected subgradient
method for the LD problem is

(32)
(33)

where is the subgradient of at .
There are various forms of the choices of the deflection pa-

rameter to ensure that two adjacent subgradients form an acute
angle. Two deflection strategies are commonly used to deter-
mine the deflection parameters: the Camerini-Fratta-Maffioli
deflection strategy (CFMDS) [18] and the average direction
strategy (ADS) [19]. Then, we can obtain the following propo-
sition.
Proposition 3: Suppose that the deflected subgradient is

given by the deflected subgradient optimizationmethod, the step
length is , and the deflection parameter is given by
either

(34)

where , or

(35)

where (34) is CFMDS and (35) is ADS, then ,
which means that the two consecutive subgradients that are gen-
erated by the deflected subgradient optimization method form
an acute angle.
This paper selects for all according to the sug-

gestion in [18]. It is worth noting that the above strategies have
different effects on the subgradient algorithms, of which the de-
tails are described in Section V-B1.
3) Deflected Conditional Subgradient: Based on the above

analysis and results, we present a new algorithm to address both

types of zigzagging phenomena. The algorithm is first to trans-
form the subgradient vector into a feasible direction (or project
the subgradient vector into the tangent cone of the feasible re-
gion at the current iterative point) as in (31) and subsequently,
deflect the feasible direction to form an acute angle with the pre-
vious direction of motion as in (32). Because the deflected direc-
tion may be infeasible, it should be transformed into a feasible
direction. We call this algorithm deflected conditional subgra-
dient (DCS) algorithm, which is given as follows:

(36)
(37)
(38)

where is the conditional subgradient of at as
in (31), is the deflection parameter, and is the
tangent cone of at .

B. Deflected Conditional Subgradient Level Algorithm

Based on the DCS algorithm, an improved simple subgra-
dient level algorithm is developed to replace the strict conver-
gent condition by estimating the optimal dual value dynami-
cally. We call this algorithm the deflected condition subgradient
level (DCSL) algorithm. Intuitively, the algorithm always over-
estimates the optimal dual function and dynamically reduces the
overestimation until it converges to the optimum. This adjust-
ment method of the overestimation is essentially identical to the
Brannlund's level control strategy [15], [16]. We adopt the over-
estimation strategy because the underestimation of the optimum
dual function will lead to early convergence in the subgradient
algorithms [2]. Furthermore, the efficiency of this algorithm can
be enhanced by introducing the DC-subgradient.
DCSLA: Let be a primal function value of , which is

derived using the heuristic that was presented in Section III-D.
Let be the subgradient of
be defined as (30) and be defined as (36). Denote

and .
Step 1. (Initialization) Select

( is an even number),
and . Set

, and
. Calculate and set .

Step 2. (Function evaluation)
Step 2.1: If , set

and ; Otherwise, set (so that
).

Step 2.2: If , then set .
Step 2.3: If , then set

.
Step 3. (Sufficient descent) If , then

set
.

Step 4. (Small overestimation detection) Set
.

If and ,

set
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, and
.

If , set .
Step 5. (Large overestimation detection) If

, then
.

Step 6. (Calculation of the subgradient and multipliers)
Let . Update the multipliers as (36)–(38),
where .
Step 7. (Accumulation of iterative paths) Set

.
Step 8. (Termination check) If or
is satisfied, then stop the iteration; otherwise, go to Step 2.
Remark 4: In the above algorithm, is the estimation of

and is the estimation of . If we
use to estimate , then set
according to the accumulation of iterative paths (Step 7). This
condition is realizable because can provide a lower bound
of according to the dual theory [2]. Hence, we can set

.
Remark 5: In the late iterations of the DCSLA, will

weakly oscillate between two points or within a local area be-
cause of the overestimation strategy. This phenomenon cannot
be eliminated by the deflected-conditional subgradient because
it only changes the search direction. To improve the efficiency,
Step 4 detects the weak oscillation by recording the history in-
formation and directly accumulating sufficient number of paths
to adjust the estimation level. To guarantee the global conver-
gence, Step 5 adjusts the estimation level under the large-
overestimation condition. The detailed convergence analysis is
provided in the Appendix.
Compared with other step-length methods [14], [15], [17],

this method is simpler and has fewer limitations such as the
priori distance between the initial point and the optimal point.
Moreover, this method introduces a new subgradient to improve
the convergence. The numerical results can confirm this im-
provement in Section V. Hence, the DCSLA inherits the sim-
plicity and low computational complexity of the conventional
subgradient algorithm and makes up for its shortcomings such
as the strict convergence condition and strong zigzagging phe-
nomena.
Proposition 4: For the DCSLA, we have .
The detailed proof is provided in the Appendix.

V. COMPUTATIONAL RESULTS

A. Algorithm Parameters
To analyze the performance of the presented algorithm for the

SCC scheduling problem, our computational study compares six
methods. For simplicity, we denote the subgradient level algo-
rithm as L, the standard subgradient as S, the conditional sub-
gradient as C, the Camerini-Fratta-Maffioli deflection strategy
as F, and the average direction strategy as A,

LC the algorithm L that adopts the method C;

LCF the algorithm L that adopts the methods C and F;

LCA the algorithm L that adopts the methods C and A.

The other three methods LS, LSF, and LSA have similar
meanings.
The initial parameters of the algorithms are provided as fol-

lows:
.

Remark 6: Because the gaps of real scheduling problems
are larger than 1% and according to the convergence
proof, we set as the stopping
criterion. In the late iterations of the DCSLA, the oscilla-
tion range of is small, so we set
as the criterion of the small overestimation. Here we set

and based
on our experimental experiences. Correspondingly, we set

to estimate the distance
between and .
All algorithms are evaluated using the following performance

measures: relative duality gap, iteration numbers, and compu-
tational time. The relative duality gap

% is used as a criterion to measure the suboptimality,
where is the upper bound, which is derived from the modi-
fied feasible solution, and is the lower bound, which is ob-
tained from the solution of the dual problem. All algorithms are
implemented in C# language and run on a PC with Intel Core
i7-2600 3.4 GHz CPU using the Windows 7 operative system
(64 bit).

B. Problem Instances and Computational Results

1) Problem Instances: By carefully analyzing the actual
production data from Baosteel Complex of China, we generate
a total of 1440 test instances. The problem structures are
described as follows.
(1) The number of stages varies at two levels: 3 and 4. The

number of machines at each stage varies at three levels: 3, 4,
and 5. The number of batches on each machine at the last stage
varies at four levels: 2, 3, 4, and 5. The number of jobs in each
batch varies at six levels: 3, 4, 5, 6, 7, and 8.
(2) The objective function coefficients

. The setup time is . The integer
of the transportation time is uniformly generated in the range
of [3, 10]. The integer of the processing time is uniformly
generated in the range of [36, 50].
We consider six combinations of the stage and machine levels

(Stages versus Machines): 3 versus 3, 3 versus 4, 3 versus 5, ,
4 versus 5. There are pairs of the batch and job levels
in each combination of the stage and machine levels. For each
pair of the batch and job levels in the above combination con-
figurations, we randomly generate ten instances, which results
in a total of test instances.
2) Computational Results: Because the full details of the test

results are notably substantial, we will summarize these results
in more compact tables and statistic results. For simplicity, we
denote the Stages as S, Machines as M, Batches as B, and Jobs
as J. First, we consider a representative combination of the stage
and machine level (i.e., S versus versus 4).
Tables I and II provide the gaps and the lower bounds of six

algorithms, respectively. Table III presents the iteration num-
bers and running times of the six algorithms. From the compu-
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TABLE I
GAPS (%) OF SIX ALGORITHMS (S VERSUS VERSUS 4)

TABLE II
LOWER BOUNDS OF SIX ALGORITHMS (S VERSUS VERSUS 4)

tational results of the three tables, we can obtain the following
observations.
(1) The LR approach for the SCC scheduling problems can

obtain high-quality solutions within acceptable computational

TABLE III
ITERATION NUMBERS AND RUNNING TIMES OF SIX ALGORITHMS

(S VERSUS VERSUS 4)

times. The overall average gaps of the six algorithms are less
than 2.40%, whereas the overall average running times are
shorter than 17.1 .
(2) LC, LCA, and LCF perform better than LS, LSA, and LSF

in terms of gaps and running times. In particular, the overall av-
erage gaps of the former group are all 2.25%, which are less than
those of the latter group that are 2.40%. The longest overall av-
erage running time of the former group is 8.0 , whereas the
shortest overall running times of the latter group is 14.1 . Be-
cause the only difference between the two groups is the condi-
tional subgradient, we can conclude that the conditional subgra-
dient plays an important role in improving the efficiency.
(3) The deflected subgradient slightly affect the efficiency of

the DCSLA compared with the conditional subgradient. The av-
erage direction strategy A even worsens the DCSLA. In partic-
ular, the running times of the LSA are longer than those of LS
and LSF. Similar observations can also be found in LC and LCF.
Because the deflected subgradient mainly works in the interior
feasible region, the computational comparisons reveal that the
entire optimizing process appears occur at boundary of feasible
region. After carefully analyzing the multiplier , we found
that contains many zero elements. Moreover, the fea-
sible region of nonnegative multipliers is a polyhedral, which
implies that the conditional subgradient direction is parallel to
the face at the iterative point. This result can explain why the
deflected subgradient does not work in the optimizing process.
Furthermore, the deflection strategy F only deflects the condi-

tional subgradient direction when it forms an obtuse angle with
the previous deflected subgradient vector, whereas the deflec-
tion strategy A always bisects the current subgradient direction
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Fig. 3. Comparisons of the iteration numbers and running times of six algorithms.

and the previous deflected direction. The computational com-
parisons show that the algorithms that adopt the strategy A per-
form worse than the algorithms that adopt the strategy F. This
result indicates that the choices of the deflection strategy are
also essential to improve the efficiency.
(4) The LCF has better lower bounds than the other algo-

rithms. In addition, the LCF performs better than the LC for
some large-scale problems. Specifically, the running times of
LCF for the problems (B versus J: 5 versus 6, 5 versus 7 and 5
versus 8) are shorter than those of LC in Table III.
To compare the computational results of the three combina-

tions of the stage and machine levels, we present the average it-
eration numbers and running times of six algorithms at various
problem sizes

in Fig. 3. In addition, we provide the minimum, maximum
and average value of the duality gaps and iteration numbers of
the six algorithms in Table IV. The previous observations also
hold in these computational results. It is worth noting that LCF
performs best among the six algorithms in terms of gaps and
running times.

VI. CONCLUSION
This paper developed a relaxation approach for the machine

capacity constraints to solve the SCC scheduling problem.
Some valid inequalities were proposed to strengthen the La-
grangian relaxation. The LD problem was solved using the
DCSLA, which improves the efficiency by weakening the
phenomena and guarantees global convergence using the
Brannlund's level control strategy. The effects of different
deflection strategies on the algorithm were also studied. The

TABLE IV
DUALITY GAPS (%) AND ITERATION NUMBERS OF SIX ALGORITHMS

computational comparisons and careful analysis showed that
the optimizing process for the LD problem appears occur at
the boundary of the feasible region. The algorithms that adopt
the conditional subgradient perform better than the algorithms
that adopt the deflected subgradient. Furthermore, the compu-
tational results demonstrated that the algorithm LCF performs
best among the six algorithms in terms of duality gaps, iteration
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numbers and running times. The method can also be applied
to other similar scheduling problems. Further research may
focus on the improvement of the proposed methods and their
applications in the future.

APPENDIX
CONVERGENCE PROOF

Before providing the proof of the global convergence, we in-
troduce several lemmas and notations. Let and

. According to (31) and (37), it
is easy to see that the deflected conditional subgradient is
bounded because the subgradient is bounded. For conve-
nience, we suppose ( is a large constant). It is easy
to obtain the following lemma.
Lemma 1: is concave over and is

convex over .
Proof: This proof can be obtained from [2, Prop. 5.1.2].

Lemma 2: (Projection theorem) Given some , a
vector is equal to if and only if

(39)

Proof: This proof can be obtained from [2, Prop. B.11].
From Lemma 2, it is not difficult to obtain the following

lemma.
Lemma 3: Given some vector is positive

scalar and . Let and ,
then

(40)

Lemma 4: Suppose that and is given by (30), (36),
and (37). Let and be such that . If

Then

(41)

(42)

for all .
Proof: According to Proposition 2 and the definition of ,

it is not difficult to prove that

Therefore, we need only to show that
. We will prove the lemma by induction on . Clearly, (41)

is valid for with an equal sign. Suppose that the assertion
of the theorem is true for some . To prove it for ,
observe that by

(43)

Hence, we need only to show .
Let . Then

(44)

The last inequality can be obtained from Lemma 3. Because
is convex over , from the definition of conditional sub-

gradient, we can obtain . From
, we know that

The last inequality follows from the induction hypothesis (41).
Hence, it holds that

(45)

This equation and (43) yield

(46)

Because , from (43) and (46), it follows that
, which implies that

(41) holds for all .
Based on the above results, we have

Lemma 5: Assume that the stepsize in (38) is such that

Then, the sequence , which is generated by the deflected
conditional subgradient algorithm, converge to an element of

.
Proof: This proof is similar to the proof of [20] and [40].

It is omitted here.
Lemma 6: For the DCSL algorithm, we have , and

either or .
Proof: Assume that takes only a finite number of values,

say . In this case, from Steps
5 and 7 it can be known that

for all , which implies that

However, this result is impossible, because for all ,
we have

Hence, .
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Let . If , then from Steps 3 and 6 it follows

that for all sufficiently large , we have and
, which implies that .

Proposition: For the DCSLA, we have .
Proof: If , according to Lemma 6, it is not

difficult to know that and it is proved.
Thus, assume that . Let be given by

. Then, from Steps 4, 5, and 7, we
obtain

so that and whenever

at Step 6. Hence

Because the cardinality of is infinite and

, we have

Now, to arrive at a contradiction, assume that
, so that for some and some
. Because is continuous over and , there

is a sufficiently large such that for all , so that
for all

. Using this relation and Lemma 4, for and
, we obtain

By summing these inequalities over , we have

(47)

If , according to the definition of ,
we know that because is a
convex function; Otherwise, according to (47).

Because and , according to Lemma 5,

the following relation can be obtained: .

Therefore, , which contradicts the
assumption.
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