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Abstract—A job shop is a typical environment for manufacturing
low-volume and high-variety discrete parts, where parts are of var-
ious due dates, priorities, and sequences of production operations.
Good scheduling of when to do what using which resource is crit-
ical and challenging for the competitiveness of job shops. The La-
grangian relaxation neural network (LRNN) presented by Luh et
al. provides an effective solution to this problem. To further speed
up the scheduling of large problems, the parallelism of the LRNN
approach is exploited in this paper for hardware implementation.
A parallel processor based on the single-instruction multiple-data-
stream architecture and its associated instruction set are designed.
The architecture is implemented in a single-poly quadruple-metal
0.35- m CMOS technology. Test results shows that the fabricated
chip achieves 10 and 30 times speed-up when compared with sev-
eral commercial digital signal processor chips and a 600-MHz PC,
respectively.

Index Terms—Job-shop scheduling, Lagrangian relaxation
neural network (LRNN), single-instruction multiple-data-stream
(SIMD).

I. INTRODUCTION

SCHEDULING is one of the critical issues for achieving op-
erational efficiency in almost all manufacturing industries.

Good scheduling leads to increased efficiency, utilization, and,
ultimately, profitability. There have been many efforts made to-
ward developing good scheduling systems for semiconductor
manufacturing [1]–[4] and other industries [5]–[8], and the ef-
fective resolution of scheduling problems has resulted in signif-
icant savings. For example, a scheduling system reported in [5]
is estimated to save over a million dollars a year for a major steel
company. With the introduction of flexible machines and shop
floor automation in recent years, schedules of an entire facility
are now expected to be updated with a short notice to accommo-
date dynamic changes such as incoming order, machine failure,
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or other uncertainties so as to maximize an overall profit or min-
imize an overall cost.

A job shop is a typical environment for manufacturing low-
volume and high-variety parts [9]. In a job shop, parts with var-
ious due dates and priorities are to be processed by various types
of machines. Given a set of parts to be processed and a set of
machines, job-shop scheduling is to select, for each operation, a
machine and the corresponding beginning time to achieve cer-
tain operational objectives. Good scheduling is beneficial for
machine utilization and on-time delivery of parts. How to obtain
a good solution is critical to the competitiveness of any manu-
facturer.

It has long been recognized, however, that the generation of
optimal schedules usually requires excessive computation time
regardless of the methodology used. In practical applications,
solution optimality is traded off with speed, and suboptimal or
heuristic-based approaches are very often used for timely de-
cision making. There have been many job-shop scheduling al-
gorithms [10]–[13] developed from the viewpoint of software
implementation. However, there is almost no hardware-oriented
approach, which can speed up the scheduling process by ex-
ploiting application-specific hardware.

Recently, with the goal for hardware implementation, Luh, et
al. [14] developed the Lagrangian Relaxation Neural Network
(LRNN) algorithm for a class of job-shop scheduling problems.
The LRNN algorithm combines neural network optimization
capability with Lagrangian relaxation (LR) for constraint
handling. Neural networks are parallel architectures that have
been used to solve many optimization problems [15], [16].
The LR technique introduces a set of Lagrange multipliers to
relax the system-wide coupling constraints and decompose
the original optimization problem into subproblems that can
be solved by neural networks mentioned above. In LRNN, a
neuron-based dynamic programming (NBDP) [14] structure is
developed based on the dynamic programming principles [17]
to efficiently solve these subproblems. After each subproblem
is solved, Lagrange multipliers are updated according to the
current scheduling solution. Finally, convergence is reached
and heuristic adjustment of the scheduling solution leads to a
feasible near-optimal solution.

Due to the inherent parallelism in LRNN, the algorithm is
suitable for parallel processing implementation. One approach
is to use a cluster of computers and the other approach is to
use general-purpose multiprocessing digital signal processors
(DSPs). Both approaches can be regarded as coarse-grain par-
allel machines [18]. Although the LRNN can run on coarse-
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grain parallel machines, such configuration will degrade its ef-
ficiency since the LRNN was originally motivated by massively
parallel neural networks and, thus, is more amenable to fine-
grain parallel implementation. We therefore present another ap-
proach that adopts the concept of fine-grain parallel machines to
speed up the LRNN algorithm. Instead of solving subproblems
in parallel as in coarse-grain implementation, a programmable
parallel processor IC is designed to exploit the parallelism in the
structure for LRNN subproblem solving.

In this paper, we analyze the LRNN algorithm and develop
a simplified NBDP technique for solving the subproblems in
job-shop scheduling. In light of the inherent sequential nature of
the dynamic programming algorithm, we design a scalable par-
allel processor IC to implement the LRNN. This IC is a single-
instruction multiple-data-stream (SIMD) architecture parallel
processor. The processing elements (PEs) as well as the instruc-
tion of this parallel processor are tailored for the LRNN algo-
rithm. Test results of the fabricated chip show that the proposed
chip achieves a speed-up of approximately one-tenth of the time
required for the software solution for a test problem. With more
processing elements, up to two orders of magnitude in speed-up
can be achieved for scheduling larger problems.

The remainder of this paper is organized as follows. In Sec-
tion II, details of the job-shop scheduling problem and the La-
grangian relaxation methodology are formulated. In Section III,
an LRNN algorithm more amenable to parallel hardware imple-
mentation is introduced. Section IV describes the architecture
and instruction set of the parallel processor. Circuit design of
the parallel processor IC is then presented in Section V. In Sec-
tion VI, physical design and measurement results of the IC are
given and discussed. Finally, Section VII concludes this paper.

II. JOB-SHOP SCHEDULING USING LR

Consider a job shop where there are machine types and
each machine type may consist of several identical machines.
There are parts to be scheduled over an overall time interval of

units (also called the time horizon). Part has its due date
and weighting factor (or priority) , and has to go through
operations. The processing of each operation requires a machine
of a specific type for some prespecified units of time, and must
satisfy the following processing time requirements:

(1)

where , and represent, respectively, the beginning
time, processing time, and completion time of operation of part
. Also, each operation may be started only after the completion

of its preceding operation, i.e.,

(2)

Assume that one machine can only process at most one part at
a time. It is obvious that the number of operations assigned to
machine type at time should not be more than the number
of machines available at that time, , i.e.,

(3)

where is a 0–1 variable and equals 1 if operation of part
is being processed by a type- machine at time ; it equals 0

otherwise. Values of variables are determined once the
beginning times of all operations are decided.

The scheduling goal of on-time delivery for individual
parts is modeled as penalties on part delivery tardiness

, where is the completion
time of part . The scheduling problem then boils down to

(4)

subject to constraints (1)–(3). Note that this formulation falls
into the class of separable optimization problem. By exploiting
the separability, the Lagrangian relaxation (LR) method uses the
Lagrange multipliers [14]
to relax machine capacity constraints (3). The relaxed problem
is given by

with

(5)

subject to constraints (1) and (2). After regrouping the terms in
(5) according to parts, we obtain the following independent part
subproblems for a given set of Lagrange multipliers :

with (6)

subject to constraints (1) and (2) of part .
Let denote the machine type used by the th operation of

part . Then by the definition of , we can rewrite (6) as

with (7)

subject to constraints (1) and (2) of part .
For a given set of Lagrange multipliers , part subprob-

lems can be solved independently among the parts. After solving
a part subproblem and obtaining the beginning times of its op-
erations, the multipliers are updated according to

(8)

where is the step size. One iteration of the method consists
of solving all part subproblems and updating the corresponding
multipliers. With proper step sizes, iterative adjustment of mul-
tipliers will lead to the convergence of solution. Since the solu-
tions of part subproblems, when put together, may result in an
infeasible schedule, i.e., machine capacity constraints might be
violated in some instances, a heuristic [14] is then used to adjust
the schedule to feasibility. In the heuristic, a list of immediately
performable operations is created in the ascending order of their
beginning times from part subproblem solutions. Operations are
then scheduled on the required machine types according to this
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Fig. 1. Structure of the NBDP scheme.

list as machines become available. If the capacity constraint for
a particular machine type is violated at time, a greedy heuristic
determines which operation should begin at that time and which
ones are to be delayed by one time unit. The subsequent oper-
ations of those delayed ones are then delayed by one time unit
if precedence constraints are violated. The process repeats until
the last operation in the list.

III. LRNN ALGORITHM

Based on the above LR solution framework, Luh et al. de-
veloped an LRNN algorithm for job-shop scheduling problems
[14]. The novelty of their approach lies in an NBDP for solving
individual part subproblems and an efficient method used to up-
date Lagrange multipliers.

The main procedures in the LRNN algorithm are as follows:

1) neuron-based dynamic programming (NBDP) to compute
costs of all possible scheduling for a subproblem;

2) forward sweep to find the legitimate schedule with the
optimal cost for the above subproblem;

3) per-subproblem updating of Lagrange multipliers;
4) cyclic iteration among subproblems until convergence of

the relaxed scheduling problem;
5) heuristic adjustment of subproblem solutions to obtain a

feasible schedule.
Procedures 1)–4) require intensive computation. In this section,
we will analyze and modify them for parallel hardware imple-
mentation.

A. NBDP

Fig. 1 shows the NBDP structure for a part having three op-
erations with processing times 3, 2, and 1, respectively, and
in the figure, stages correspond to operations and states corre-
spond to operation beginning times. The part index is omitted
for notational simplicity. The backward dynamic programming
(DP) method [17] is utilized to solve the part subproblem in a
stage-by-stage iterative procedure that starts from the last stage.

For state at stage , there is a state node (SN) and a
comparison node (CN). First, each state is associated with a
stage-wise cost given that the processing of the th operation
begins at that state (time). According to (7), the stage-wise
cost is the summation of all multipliers of the machine type
under consideration during the processing of the operation,
i.e., , where and are the
processing time and machine type of the stage (operation). The
stage-wise cost is high when it is costly to schedule the opera-
tion to begin at that state. The optimal cost-to-go (OCTG) for
an SN represents the minimum cost to schedule the remaining
operations after completing stage (the th operation). For
a state in the last (right-most) stage, the OCTG equals to the
tardiness penalty of that state. The SN computes its cumulative
cost by adding its stage-wise cost and the OCTG given that the
processing of the th operation begins at that state.

The computation of OCTGs for states in the th stage
is performed state-by-state by CNs in stage starting from the
bottom-most state. In the procedure, output of the CN of state

in stage is fed to the CN of state in the same stage.
The CN of state then performs a pair-wise comparison
between the cumulative cost of state obtained from the
SN of state (cost associated with beginning the operation
at state ) and the output from the CN of state (cost asso-
ciated with beginning the operation after state ), and finds
the minimum as its output (see Fig. 1). After these comparisons
are sequentially performed from the bottom-most state to the
top-most state, the output of the state- CN represents the min-
imum cumulative cost among states .
This value then serves as the OCTG input to state of
stage as its OCTG, where is the processing time of
operation .

In summary, as the DP algorithm moves backward from the
last (right-most) stage to the first (left-most) stage, cumulative
costs for stage are first computed based on the stage-wise costs
and the OCTG of stage and then the CNs find the OCTGs for
stage . Computations by both SNs and CNs are functionally
repetitive from one stage to the next. The optimal subproblem
cost is then the minimum of the cumulative costs in the
first (left-most) stage.

B. Forward Sweep and Lagrange Multiplier Updating

In addition to obtaining the optimal subproblem cost ,
we need to find the beginning times of all operations. This is
achieved by using a decision flag at each CN to record which of
two operands is smaller in the pair-wise comparison procedure
to find the OCTG. A flag of value “1” indicates that the cost
is smaller if the operation begins at the particular state, while a
“0” indicates that the cost is smaller if the operation does not
begin at the particular state. Beginning times of all the opera-
tions are thus identified from these flags by the forward sweep
procedure that searches through all the necessary flags stage by
stage starting from the first (left-most) stage. Within stage ,
the search is done state-by-state starting from the state corre-
sponding to the earliest possible beginning time, which is equal
to the beginning time of stage plus the processing time of
the th operation. The beginning time of stage is set to
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the first state with its CN flag equal to “1” in this search. An ex-
ample of the forward sweep procedure is also shown in Fig. 1.
Numbers in white circles represent cumulative costs, and num-
bers in gray circles represent OCTGs from the preceding stage.
The dashed lines show the optimal path taken during the for-
ward sweep. The optimal beginning times are state 2 for stage
1, state 5 for stage 2, and state 9 for stage 3. Note that the earliest
possible beginning time of the third operation (stage) is state 7,
however, the third operation does not start until state 9 because
of higher costs in states 7 and 8. After one subproblem is solved
and its minimum cost and beginning times found, the Lagrange
multipliers are adjusted by (8). Given the new beginning time
and the old beginning time of each operation of this subproblem,
all affected Lagrange multipliers can be updated.

C. Algorithm Analysis and Modification

The NBDP is the most computation-intensive step in the
LRNN algorithm. Some of its processing steps such as the
cumulative cost computation and the multiplier updating can
be computed in parallel. However, the comparisons for finding
the OCTG and the forward sweep procedure are inherently
sequential with strong data dependency and thus cannot be
parallelized. Further analysis shows that the forward sweep
involves only bit comparison while the comparison in a CN re-
quires subtraction of two integers. Therefore the sequential CN
comparisons in NBDP, especially when the number of states
is large, is a bottleneck for parallel hardware implementation
of the LRNN algorithm.

To improve the speed of the LRNN method, we developed a
modified search method [19], [20] that limits the search ranges
that the CNs need execute comparison and thus reduces the data
dependency. Numerical simulation shows that the scheme ob-
tains solutions with approximately the same quality as the orig-
inal NBDP scheme. In addition, finite-word-length simulations
of several typical job-shop scheduling problems are also con-
ducted to find the minimum word length that achieves accept-
able solution quality.

IV. SIMD PROCESSOR DESIGN

In the LRNN, most processing in a state is identical to that
of other states except on different data. Such a feature naturally
leads to an SIMD architecture for the parallel LRNN hardware
realization.

A. Overall System Architecture Design

An SIMD-type parallel processor IC is developed for NBDP
and multiplier updating. In this chip, the processing in a state
is handled by one PE, and speed-up is achieved because of the
parallelism provided by the PEs. Only a limited number of PEs
can be integrated into one parallel processor IC, therefore, only
problems with limited numbers of states (time horizon) can be
tackled. For typical applications, several SIMD-type ICs may be
cascaded to accommodate problems with long time horizons. In
addition, current beginning times of all stages in all subprob-
lems need be stored for computation of new beginning times.
To support the cascading, beginning time storage, and problem

Fig. 2. Overall system architecture for solving the job-shop scheduling
problem using the IC.

Fig. 3. Block diagram of the parallel processor IC.

setup, a microcontroller is used to control all cascaded parallel
processor ICs and provide temporary data storage.

The overall architecture for solving job-shop scheduling
problems using the IC is shown in Fig. 2. It consists of a
personal computer, a microcontroller, and one or multiple
parallel processor ICs. According to the specifications of a
job-shop scheduling problem to be solved, software in the host
PC applies Lagrangian relaxation to the problem and generates
the adequate data and control sequences. The data and control
sequences are sent to the microcontroller. The microcontroller
then feeds the data from PC to the parallel processor ICs,
controls their processing sequence (program), and finally re-
turns the solution to the host PC. The IC is used to perform
NBDP, forward sweeping, and multiplier updating. Finally, the
software in the host PC performs heuristic adjustment of the
LRNN solution to obtain a feasible solution. For the remainder
of the paper, we will focus on the design and implementation
of the parallel processor IC.

B. Parallel Processor IC Design

The block diagram of the parallel processor IC is presented
in Fig. 3. Each PE is used to perform arithmetic operations such
as addition, subtraction, comparison, etc., associated with the
processing in a state. Within a PE, the cumulative cost of a state
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is computed; pair-wise comparison of cumulative costs is made;
and Lagrange multipliers associated with a state are updated.

For easy access of the Lagrange multipliers, the multipliers
associated with state are stored in the
corresponding PE. With this local multiplier storage scheme, the
SN and CN functions and multiplier updating associated with
a particular state can all be performed without incurring com-
plex inter-PE data exchange. In addition, a forward sweep cir-
cuit is designed specifically to perform the forward sweep, and
a global memory is used to store global data such as due-date
or step-size required for LRNN implementation. Finally, an in-
struction decoder is used to decode instructions from the micro-
controller into signals that control the proper functioning of all
PEs and other circuitries. With this linear PE arrangement and
local multiplier storage, our design provides the cascading capa-
bility because data communication between two ICs is limited
to that between the top-most PE in one IC and the bottom-most
PE in the other IC.

How the IC may be applied to a job-shop scheduling problem
is summarized as follows. Assume for simplicity of description
that only one IC is required, i.e., no cascading. Instructions from
the microcontroller are sequentially fed into the chip and de-
coded into control signals by the instruction decoder. Control
signals are sent to functional blocks on the chip through a con-
trol bus and executed in the following way:

1) The OCTGs for all states of the last stage of a subproblem
are calculated by all PEs and comparison results are stored
in the corresponding PEs ( states).

2) The OCTGs are calculated stage by stage, from the last
stage to the first, by all PEs ( stages).

3) After calculations for the first stage is completed, the
forward sweep circuit finds, stage by stage, the new
beginning times of all stages according to the locally
stored comaprison results (decision flags). A subproblem
is solved after the beginning times of all stages are found
( stages).

4) All PEs then perform multiplier updating according to the
difference between the new and the old beginning times
( stages).

5) Another subproblem is then solved using the same proce-
dure. Once all the subproblems are solved, an iteration is
completed ( subproblems).

6) The PC determines the number of iterations to be executed
based on a preset stopping criterion ( iterations).

7) Finally, a heuristic adjusment is made to resolve machine
capacity violations.

C. Instruction Set Design

To implement the LRNN algorithm over the PEs, an instruc-
tion set is designed as listed in Table I. The instructions are cat-
egorized into four types.

1) Data transfer instructions are needed for the transferring
of data between local/global memory and registers. For
example, the instruction GLDA loads data from the global
memory into a register.

TABLE I
INSTRUCTION SET

2) Arithmetic logic unit (ALU) operation instructions are
used to perform arithmetic operations such as cost calcu-
lations, cost comparisons, etc.

3) I/O instructions are for data communications between the
microcontroller and the parallel processor ICs.

4) LRNN-specific instructions, e.g., the instruction PUSH
pushes the result of the CN comparison into a stack so
that we can pop it out later during the forward sweep.

To further speed up LRNN processing, several special
instructions were designed in such a way that two to three
arithmetic and data transferring operations are combined into
one single-cycle instruction. For example, a CN comparison
for finding the OCTG at state involves a pair-wise com-
parison, storing the minimum in a register, and shifting that
minimum to the PE associated with state . We design an
instruction (CMPAS) to execute the above three operations in
one clock cycle. Instructions ADDAS and ADDDS are also
multiple-operation instructions. A software program of the
modified LRNN algorithm is coded using these instructions.
Its execution results are compared with those of a C-language
implementation. Consistency in those two sets of results verifies
the completeness and correctness of the instruction set.

V. CIRCUIT DESIGN

In the parallel processor IC, there are four major blocks:
global memory, instruction decoder, forward sweep circuit, and
PE. Among the four, global memory can be easily implemented
by on-chip SRAM. Instruction decoder is a combinational logic
block that can be easily designed by modern synthesis software.
In this section, we will only describe the detailed design of the
PE and the forward sweep circuit.

A. PE Design

Processing elements constitute the most important functional
block in the IC. The circuit architecture of a PE is shown in
Fig. 4. An ALU is required to perform arithmetic operations
such as additions, subtractions, and others (see Table I). Regis-
ters R1, R2, and R3, ACC, and DR are introduced to latch the
ALU inputs, while the ALU output is either stored in ACC or
routed to DR of the PE above. Within the SIMD architecture,
all PEs execute the same sequence of instructions. However, it
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Fig. 4. Block diagram of the processing element.

is sometimes necessary to execute different operations in some
PEs. Registers R1, R2, and R3 are thus introduced to store pre-
vious results for conditional execution of arithmetic operations.

The local memory is required to store the Lagrange multi-
pliers and the multiplier adjustment in (8) for each ma-
chine type ( machine types). A local bus is used for data com-
munication between the local memory and the registers such as
ACC and DR. Global data communication is through the global
bus and possibly the local bus of a PE. Finally, a stack is in-
cluded in the PE to record the decision flags of all stages, which
are used later in the forward sweep.

As an example, we describe briefly how to calculate the
stage-wise cost for each state using the PE. The stage-wise
cost is defined as the sum of all multipliers associated with
the machine type needed during the processing time of the
stage (operation). In other words, for state of stage in the
th subproblem, the processing time of the stage is and

the required machine type is , and the stage-wise cost is
following (7). In

principle, additions are needed. To do these
additions in parallel without incurring too many data accesses,
a parallelized procedure is devised. First, all ACC are cleared.
Then since are stored in the local memory, the corre-
sponding multipliers are loaded into DR in all PEs. The ALU
performs ACC DR and the sum is stored into ACC. Data
in all DR are shifted upward in parallel and is then
propagated to state from state , which are executed
using a single-cycle instruction, ADDDS. Then all ALUs
perform ACC DR and the data in DR is shifted upward
again. Repeating this procedure times, the ACC of the th
PE will then have the stage-wise cost for the th state, i.e.,

, and so do the ACCs
of other PEs.

The previous paragraph has shown the advantage of the local
multiplier storage scheme. Now, we briefly describe how to
compute OCTGs by the PEs. As mentioned in Section III-D,
a modified search method was developed [19], [20] that limits
the search ranges that of the CNs need execute comparison to
improve the speed. Suppose that state corresponds to the be-
ginning time of previous iteration and is the search range,

Fig. 5. Search process of beginning time in the forward sweep circuit.

then states between and are selected for the CN
comparison procedure. At first, the cumulative cost of state is
stored in the ACC of the th PE and the DR of the th PE,
for , and flag CMPAS EN is set to “1” for the
PE corresponds to state . Note that only those PEs with
a “1” value in CMPAS EN will actually execute the CMPAS
instruction. Then the instruction CMPAS is fed to all PEs but
only the PE corresponds to state compares two num-
bers in ACC and DR, stores the minimum in ACC, stores the
decision flag into a stack, shifts the minimum into DR of the

th PE, and transfers the token to the th
PE. All of these are executed within one clock cycle. Now the
OCTG of state is stored in ACC of the corresponding PE.
Repeating the CMPAS instruction times, OCTG values
of states within the range are stored in the ACCs of the corre-
sponding PEs.

B. Forward Sweep Circuit

Previously, we explained how the forward sweep is supposed
to work. For stage of part , the search for the new begins
from state downward, so that the operation
precedence constraints are not violated. The first state with a
decision flag of value “1” is located and recorded as the new
beginning time, , of the current stage.

In the hardware implementation, the forward sweep circuit is
designed to implement the forward sweep procedure stage by
stage from the first stage to the last stage. A logic unit is de-
signed and each state has one such logic unit, and these units
are cascaded to form the basic structure of the forward sweep
circuit as shown in Fig. 5. The per-stage forward sweep is imple-
mented sequentially from the top-most state to the bottom-most
state in the search range. The logic unit has three binary inputs:
begin flag, decision flag, and search in. The begin flag is “1”
if and only if the state corresponds to the beginning time plus
the processing time of the previous stage. It indicates the earliest
allowable beginning time of the current stage where the search
process begins downward to locate the first state with a decision
flag of “1”. The decision flag is the result of the CN comparison
of the current state at the current stage. Signal search in aids
the downward search and will be set during the search process
as follows. It is “0” for those states above the state with a “1”
begin flag and those states below the state that corresponds to
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Fig. 6. “Search bypass” conditions in the forward sweep circuit.

the newly-found beginning time, and it is set to “1” in other
states. In other words, search in will be “0” in those states that
cannot be the new beginning time, thus eliminating them in the
search for the new beginning time.

The forward sweep logic unit has two binary outputs:
search out and time flag. The search out of the logic unit in
state serves as the search in of the logic unit in state .
The time flag is set to “1” if and only if the state (time) is
selected as the new operation beginning time, i.e., the first state
that has a “1” in decision flag and is no less than the state with
a “1” in begin flag.

The search procedure in the forward sweep can now be illus-
trated by Fig. 5. The earliest allowable beginning time is decoded
by the begin flags, with one begin flag per state. The begin flag
of state 2 in the figure has value “1’ and all others have value ‘0’.
The search in is initially “0” and becomes “1” after encountering
the “1”-valued beginflag at state2.After the search inbecoming
“1”,wesearch thefirstdecisionflagwith“1”value.Whenthefirst
“1” value decision flag at state 4 is found, we set the time flag of
state 4 to be “1” and reset its search out.

The aforementioned search process is inherently sequential
due to data dependency. It will therefore be very time-con-
suming for large problems. To reduce the time required for
the search process, we adopted the “carry bypass” concept in
Manchester carry chain [21] and designed a “search bypass”
scheme that will greatly reduce the search time. The forward
sweep block in the chip is divided into several sections. Under
some conditions the search in can bypass a whole section,
greatly speeding up the search process.

Two “bypass” conditions are illustrated in Fig. 6. As shown
in Fig. 6(a), if the decision flags of all states in one section are
“0”, then a “1” search in can be bypassed on to the next section.
If the search in input to the section is “0” and all begin flags
in the section are “0”, then search in can also be bypassed as
shown in Fig. 6(b). The time required for the search process can
be reduced approximately to the time for searching two sections
state by state plus the time to bypass the search in section by
section from top to bottom of the chip.

VI. IMPLEMENTATION AND MEASUREMENTS

Detail circuit design of the parallel processor IC was de-
scribed in the gate level using a hardware description language.

Fig. 7. Die microphotograph.

Fig. 8. Maximum clock rate of the IC under different supply voltages.

TABLE II
SUMMARY OF THE PARALLEL PROCESSOR IC

Functional verification of the circuit design was conducted by
using a five-part test problem. Layout of the parallel processor
IC was generated through the standard-cell-based design flow.
Functional and timing simulations of the layout were carried
out. The finished layout is approximately 4.56 4.24 mm
in a single-poly quadruple-metal 0.35- m CMOS technology
and contains approximately 356 000 transistors. The die photo-
graph of the fabricated parallel processor IC is shown in Fig. 7.
There are 16 processing elements arranged in two columns.
The global memory, the instruction decoder, and the forward
sweep circuit are integrated into a block below the processing
elements. The global bus and the control bus cross the PEs
from top to bottom in the middle.
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TABLE III
PERFORMANCE COMPARISON

Functional correctness of the fabricated IC was verified under
various clock rates and various supply voltages. The maximum
clock rates under various supply voltages are shown in Fig. 8,
and we can see that the parallel processor IC is functionally
correct at 100-MHz operating frequency under a supply voltage
of 3.3 V. With a 3.3-V supply voltage, the power dissipation of
the IC is 742 mW at a speed of 100 MHz. Table II summarizes
the key features of the parallel processor IC.

Two test problems are used to examine the performance of
the IC. Problem A is a five-part problem with a time horizon
of 16, and problem B is a 20-part problem with a time horizon
of 128. Assembly codes implementing the LRNN algorithm are
written by using instructions provided by our parallel processor
and several commercial DSP chips, respectively. The numbers
of instructions needed for the parallel processor IC and for sev-
eral commercial DSP chips to solve these two test problems to
similar levels of solution quality are then derived. Computation
time is then calculated according to the following formula:

(9)

In the above, the instruction count is the number of instructions
that needs to be executed to solve a problem. Cycle per instruc-
tion (CPI) is the average number of clock cycles that an instruc-
tion needs. The CPI of our instruction set is 1 and the cycle time
is 10 ns.

Recall that the key parameters of job-shop scheduling prob-
lems are as follows:

part number
average operation number per part
average processing time per operation
time horizon
search range

After careful examination of the program, the required instruc-
tion count for solving one iteration of a job-shop scheduling
problem is given by

(10)

For example, in problem B,
, and . Substituting the above parameters into (10), we

obtain the number of instructions to complete 100 iterations is
approximately , which amounts to 6.54 ms at a clock
rate of 100 MHz. The computation times for the DSP chips are
also estimated in the same manner.

Table III presents the performance comparison among the
parallel processor IC, several commercial DSP chips, and the
software solution compiled by Visual C++ 5.0. When compared
to a software solution using a PC with 600-MHz CPU, the par-
allel processor can achieve up to 10- and 30-fold speed-up for
the two test problems, respectively. Of course to accommodate
a longer time horizon of 128, eight chips have to be cascaded.
Furthermore, when compared to the commercial DSP chips, the
parallel processor chip can be at least ten times faster when
solving a large test problem. Though the commercial DSP chips
can also be used to improve speed performance, we can see that
the speed performance improvement by using parallel processor
IC is more significant when solving the larger test problem. Ac-
tually, much further improvement can be achieved when solving
problems much larger than problem B if more parallel processor
ICs are used. The speed improvement is achieved by exploiting
the parallel processing capabilities of the parallel processor ICs.
It is hard to improve speed performance by using multiple DSP
chips since inter-chip communications will become the bottle-
neck and degrade the speed performance.

VII. CONCLUSION

In this paper, a parallel processor and its VLSI implemen-
tation for solving the job-shop scheduling problems based on
the LRNN algorithm have been presented. Modifications of
the original algorithm were made so that the method is more
amenable to hardware implementation. Several techniques,
such as parallel cost computation, integrating more operations
in a single instruction, “search bypass” in the forward sweep,
and others were devised to enhance the performance of the
parallel processor. The parallel processor IC was fabricated
using a 0.35- m CMOS process, and the fabricated chip op-
erates correctly at 100 MHz from a 3.3-V supply voltage and
consumes only 0.74 W. Test results show that up to 10- and
30-fold speed-up is achieved by the proposed parallel porcessor
IC when compared to solutions using commemrcial DSP chips
and a 600-MHz PC, repectively.

For a job-shop scheduling problem in a semiconductor man-
ufacturing system, the part number is around 300–500 or even
larger while each part may contain 200–300 operations. More-
over, usually a much longer time horizon is considered in a semi-
conductor manufacturing system. Therefore, the dimensions we
faced are much larger than problem B and much longer time is
required by using commercial DSP chips or software solution.
In those cases, the proposed IC or its extension using a more
advanced 0.13- m CMOS technology will provide even greater
speed improvement.
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