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Optimization of Group Elevator Scheduling
With Advance Information
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Abstract—Group elevator scheduling has received considerable
attention due to its importance to transportation efficiency for
mid-rise and high-rise buildings. One important trend to im-
prove elevator systems is to collect advance traffic information.
Nevertheless, it remains a challenge to develop new scheduling
methods which can effectively utilize such information. This paper
is to solve the group elevator scheduling problem with advance
traffic information. This problem is difficult due to various traffic
patterns, complicated car dynamics, and combinatorial explosion
of the search space. A two-level formulation is developed with
passenger-to-car assignment at the high-level and single car
dispatching that is innovatively formulated as passenger-to-trip
assignment at the low-level. Detailed car dynamics are embedded
in simulation models for performance evaluation. Taking advan-
tage of advance information, a new door action control method
is suggested to increase the flexibility of elevators. In view of the
hierarchical problem structure, a two-level optimization frame-
work is established. Key problem characteristics are exploited to
develop an effective trip-based heuristic for single car dispatching,
and a hybrid nested partitions and genetic algorithm method for
passenger-to-car assignment which can be extended to solve a
generic class of sequential decision problems. Numerical results
demonstrate solution quality, computational efficiency, benefit of
advance information and the new door action control method, and
values of new features in our hybrid method.

Note to Practitioners—This paper is motivated by the needs to
develop new elevator scheduling methods that can make effective
use of advance traffic information. A novel two-level formulation
is developed, with detailed car dynamics embedded in simulation
models for performance evaluation. Taking advantage of advance
information, a new door action control method is suggested for car
dynamics to increase the flexibility of elevators. Key problem char-
acteristics are exploited to develop an effective two-level optimiza-
tion framework, where the high-level solution method can be ex-
tended to solve a generic class of sequential decision problems. Nu-
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merical results demonstrate values of advance information and the
new door action control method, and effectiveness of our solution
method. Further improvement is needed to reduce CPU time for
online implementation.

Index Terms—Advance traffic information, destination entry,
genetic algorithm, group elevator scheduling, nested partitions.

I. INTRODUCTION

G ROUP elevator scheduling is important to transportation
efficiency for mid-rise and high-rise buildings, and how

to improve the service quality of elevators has received consid-
erable attention. In conventional elevator systems, only up and
down buttons are available for hall calls, and passengers cannot
specify their destinations until they enter the elevators. The sys-
tems need to make decisions in the presence of uncertainties on
passenger arrival times and destinations [1]. Such decisions are
sometimes unsatisfactory. For instance, passengers often have
a long wait for the next elevator because they missed an ele-
vator that left a few seconds previously; passengers often have
to wait for the door to close even if no one is going to board.
The reason why these two phenomena arise is that due to lack
of traffic information, the elevator systems have to rely on door
dwell time, the minimum time interval to keep the door open,
to decide when to close the door. To cope with traffic uncertain-
ties, advanced technologies have been introduced to collect and
predict traffic information. In a Destination Entry system, pas-
sengers can enter their destinations through keyboards before
they get into the cars [2]. For these systems, passenger arrival
times, origins, and destinations are known before the systems
make decisions. The latest advancements in sensor technology
and information technology further open up the possibility to
collect future traffic information within a certain time window
[3]–[6]. Beyond such information, statistical data and/or statis-
tical forecasts have been exploited to create virtual future pas-
senger traffic [7]–[9]. More information enables the develop-
ment of elevator systems with better performance. Neverthe-
less, traditional elevator scheduling methods do not have mech-
anisms to utilize advance information collected, and it remains
an open and challenging issue to develop new ones which can
effectively utilize such information. This problem is difficult be-
cause of various traffic patterns, complicated car dynamics, and
combinatorial explosion of the search space.

After a review of related literature in Section II, the problem
formulation is presented in Section III. Advance information
has been modeled by assuming that traffic information (i.e.,
passenger arrival times, their origins and destinations) within
a look-ahead time window is fully available. A rolling horizon
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scheme is then used to move the time window forward to con-
struct snapshot problems periodically or as needed [6]. By ex-
ploiting the two-level concept in [10] and [6] for each snap-
shot, a two-level integer formulation is established with pas-
senger-to-car assignment at the high-level and single car dis-
patching at the low-level. Based on a key concept “trip” which
denotes the car movement in a single direction, a single car dis-
patching strategy is innovatively represented as a passenger-to-
trip assignment. This representation abstracts key ingredients of
detailed passenger service process, separates them from car dy-
namics, and reduces modeling complexity. The detailed car dy-
namics are embedded in individual car simulation models only
for performance evaluation. Taking advantage of advance infor-
mation, a new door action control method without relying on
door dwell time is suggested for car dynamics to provide more
flexibility for elevators, making them more intelligent and effi-
cient. Since the car trajectory can be recovered through simu-
lation models, the objective function is flexible within a large
range of car wise or passenger-wise (which can be turned into
car-wise) additive measures.

A two-level optimization framework is developed for each
snapshot problem in Section IV based on the hierarchical
problem structure and the car-wise additive property of the
objective function. Given a high-level passenger-to-car as-
signment, the low-level is to optimize single car dispatching
for individual cars and return the optimized results for the
evaluation of the given high-level assignment. The high-level
is then to optimize passenger-to-car assignment based on the
evaluation from the low-level. Key problem characteristics
are innovatively exploited to develop efficient algorithms for
both levels. At the low-level, an effective trip-based heuristic
is developed on the basis of an observation on the optimal dis-
patching strategy to sequentially decide passengers to be served
in each trip for individual cars. At the high-level, an innovative
method is developed by exploiting the sequential decision na-
ture of elevator scheduling and innovatively embedding genetic
algorithm into the “local optimization” and “global verification
and correction” framework of nested partitions. This hybrid
nested partitions and genetic algorithm method (HNPGA) is
also suitable to solve a class of sequential decision problems
with certain characteristics.

Extensive testing has been conducted in Section V. Near-op-
timal solutions are obtained in a timely fashion for various traffic
patterns (i.e., up-peak, down-peak, and interfloor) and different
traffic densities. Advance information and the new door action
control method can significantly improve solution quality. The
new features of the hybrid method are also shown to be valu-
able in improving the solution quality and reducing the compu-
tational time.

II. LITERATURE REVIEW

For conventional elevator systems without destination entry
systems, extensive research has been conducted. Many simple
heuristic approaches have been developed, such as collective
control in which a car stops to serve the nearest call in its current
movement direction, the longest queue first, and the highest
unanswered floor first [11]–[13]. Although these methods are
generally computationally efficient, they can only generate

good performance for specific traffic patterns. To deal with
various traffic patterns, zoning approaches were developed,
where each car is assigned a number of floors grouped together
as a zone [12], [14]. While the zoning approaches are robust
in heavy traffic, they lose a significant amount of flexibility
[15]. Search-based approaches are developed to dynamically
explore possible car assignments to optimize certain criteria
such as the average passenger waiting time. These approaches
includes greedy search strategies which perform immediate call
assignment [16], [17], and non-greedy search strategies which
postpone passengers’ assignments for batch optimization or
consider reassignment of passengers by using updated traffic
information [18]–[20]. Greedy strategies require less compu-
tation time, whereas non-greedy ones enjoy more flexibility
of elevator control. Advanced intelligent technologies such as
expert system [21], fuzz logic [22], artificial neural network
[23], and reinforcement learning [15] have been used to de-
velop intelligent elevator scheduling methods. These methods
generally require rich experiences from professionals or huge
offline training efforts to achieve good results. The structure
of the optimal control policy to minimize the discounted or
average passenger waiting time for up-peak traffic has been
studied in [1]. The elevator system is modeled as a queuing
system by using stochastic processes to describe the passenger
arrival process and service process, and the scheduling problem
is modeled as a Markov decision problem. Dynamic program-
ming is used to derive the optimal policy.

Only a few papers have studied destination entry elevator
systems. The “Estimated Time to Destination” (ETD) method
performs immediate call assignment to optimize the total pas-
senger service time by considering both the time for each ele-
vator to serve the new call and the impact of the new allocation
on all other passengers in the system [24]. Although this method
is computationally efficient, the performance is not that good
due to its greedy nature. Inamoto et al. [10] and Luh et al. [6]
study the case with future traffic information available in a cer-
tain time window. Individual cars are coupled through serving a
common pool of passengers. Once the passenger-to-car assign-
ment is fixed, different cars are no longer coupled. Exploiting
this “separable” structure, a two-level formulation can be estab-
lished, with passenger-to-car assignment at the high-level and
single car dispatching at the low-level. In [10], the operation
of carrying a passenger from origin to destination is divided
into two jobs: on-job and off-job. Then, a job-based two-level
formation is established, with assigning passengers to cars at
the high-level and determining the processing orders of jobs for
each car at the low-level. Nevertheless, the formulation is com-
plicated due to numerous time-related continuous and integer
variables, and several special assumptions are imposed on car
dynamics and traffic profiles. The Branch and Bound method is
used to generate the optimal performance. This method, how-
ever, is very time-consuming for larger problems due to its in-
herent complexity. In [6], the detailed car dynamics are em-
bedded in individual car simulation models. A decomposition
and coordination approach is developed to exploit the separable
nature of this problem, where subproblems are solved by or-
dinal optimization-based local search, and top ranked nodes are
selectively optimized by using dynamic programming. Special
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Fig. 1. Rolling horizon scheme.

Fig. 2. Two-level problem formulation.

assumptions including no-wait and first-come-first-served are
made to reduce the search space of dynamic programming in
the expense of the solution quality.

III. PROBLEM FORMULATION

Consider a building with F floors and a group of cars.
The future traffic information is modeled by using a look-ahead
time window of length , where traffic information within the
window is assumed available, and ignored otherwise. A rolling
horizon scheme is used to shift the time window to construct
snapshot problems periodically or as needed, as shown in Fig. 1
[6]. At the current scheduling point , passengers to be consid-
ered, denoted by , includes those who are already inside the
cars, those who are still waiting, and those who arrive between

and . Those passengers are sorted in the ascending
order of their arrival times. For passenger , the
arrival time , the origin floor , and the destination floor
are assumed given.

Following the two-level concept in [10] and [6], a two-level
integer programming formulation is established for each
snapshot problem, as shown in Fig. 2, with the high-level
passenger-to-car assignment in Section III-A, and the low-level
passenger-to-trip assignment for single car dispatching in
Section III-B. The car dynamics are presented in Section III-C,
followed by objective function and overall formulation in
Section III-D.

A. High-Level: Passenger-to-Car Assignment

The high-level decision variable is the passenger-to-car as-
signment, defined as an matrix of binary variables,
where the element equals 1 if passenger is assigned

to car , and 0, otherwise. To guarantee the decision variable fea-
sible, the following constraints should be satisfied.

Passenger-to-Car Assignment Constraints: Each passenger
must be assigned to one and only one car, i.e.,

(1)

For passengers who are already inside the cars before , their
are fixed. Assignment decisions are only made on those

who have not been picked up.

B. Low-Level: Single Car Dispatching

Given the high-level passenger-to-car assignment , the
low-level is to solve for each car the single car dispatching
problem, which is in essence to determine the service sequence
(i.e., loading/unloading) of all the passengers assigned to the
same car [10]. To facilitate the definition of the low-level de-
cision variables, a concept “trip” is introduced to describe the
car movement in a single direction (i.e., up or down). Then, the
entire car trajectory can be divided into multiple trips in which
passengers are sequentially served. It is assumed that an elevator
will not change its directions until all the passengers inside are
transported to their destinations, similar to most of the current
elevator systems. Then, the loading and unloading of one pas-
senger will be in the same trip. Once the passengers served in
one trip are determined, the service sequence of those passen-
gers can be uniquely determined. In an up (down) trip, the car
will travel up (down) to sequentially load passengers that as-
signed to this trip in the increasing (decreasing) order of their
origin floors and the increasing order of their arrival times at
each origin floor, and unload them at their corresponding des-
tination floors. At each stop floor, all the unloading services
come before the loading services. Further, with a given pas-
senger-to-trip assignment, the service sequence of all the pas-
sengers can be uniquely determined simply by sequentially con-
necting the service sequences of individual trips. Therefore, the
decision variable of the low-level can be represented as the pas-
senger-to-trip assignment. This representation captures key in-
gredients of detailed passenger service process, separates them
from car dynamics, and reduces modeling complexity. It should
be noted that the car movement between two adjacent nonempty
trips could be arbitrary, i.e., a single empty trip or multiple
empty trips. The most efficient one should be the single empty
trip connecting the last stop floor of the former nonempty trip
and the first stop floor of the latter nonempty trip.

Let denote the set of passengers assigned to car :
. Since each nonempty trip will serve at least one passenger,

at most nonempty trips are required to serve . Then, the
passenger-to-trip assignment for is defined as an
matrix of binary variables, where the element equals
1 if passenger is assigned to trip , and 0, otherwise. Re-
gardless of the number of empty trips between two nonempty
trips, after serving the former nonempty trip, the car will imme-
diately move to the first stop floor of the latter nonempty trip for
improving service efficiency. To guarantee these variables fea-
sible, the following constraints should be satisfied.
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Passenger-to-Trip Assignment Constraints: Each passenger
must be assigned to one and only one trip, i.e.,

(2)

Same Direction Constraints: By definition of “trip,” the pas-
sengers assigned to the same trip must travel in the same di-
rection. Let and denote the set of passengers who travel
down, , and the set of passengers who travel
up, , respectively. Then

(3)

The two terms in the left-hand side denote the number of passen-
gers who travel down and the number of passengers who travel
up in trip . Equation (3) means that one of the two numbers
must be zero, implying that all the passengers are in the same
direction.

Capacity Constraints: At any time, the number of passengers
in the car must be less than or equal to the capacity of the car.
Let denote the set of passengers in car when the car travels
between floor and floor , including those passengers who
board the car under floor and leave the car above floor ,

, or board the car above floor
and leave the car under floor

. Then

(4)

The left-hand side denotes the number of passengers in car
when the car travels between floor and floor in trip .
The right-hand side denotes the capacity of car .

C. Car Dynamics

The high-level decision variable determines passengers
to be served in individual cars . For passengers in , the
low-level decision variable determines the service se-
quence of these passengers. Given and , a sequence
of stop floors and the passengers to be picked up or dropped off
at each stop floor can be obtained, as mentioned in Section III-B.
The car movement between two stop floors and the car action at
a stop floor are determined by car dynamics .

In the traditional car dynamics, once the car reaches a stop
floor, it will first open the door, unload/load passengers, and
keep the door open until the dwell time expires, as depicted in
Fig. 3. Here, the dwell time represents the minimum amount
of time that the door should stay open after fully opened, and
functions as a control variable to accommodate uncertain future
arrivals. Nevertheless, once the passenger-to-trip assignment is
given, the passengers to be loaded and/or unloaded at one stop
floor are fixed, and there is no need to rely on door dwell time
to control the door action. A new door action control method is
then suggested by removing the dwell time to provide more flex-
ibility to the behavior of elevators: the car could leave the stop
floor immediately even if the dwell time is not expired, as long
as the car finishes all the loading/unloading tasks at this floor;

Fig. 3. Traditional car dynamics.

and the car could stay and wait for passengers to be served even
if the dwell time is expired. In this way, elevators would be more
intelligent and efficient, thus achieving better performance.

By adopting either kind of car dynamics mentioned above,
the car trajectory can be recovered, and then pickup times ’s
and departure times ’s can be obtained, i.e.,

(5)

Since car dynamics (5) are too complicated to be expressed ex-
plicitly, they are embedded in individual car simulation models.
Based on those simulation models, a large number of passenger-
wise and car-wise performance measures (e.g., average pas-
senger waiting time, average passenger service time, etc.) can
be derived. Then, the objective function is rather flexible with
respect to such choices.

D. Objective Function and Overall Formulation

The usual objective to measure passenger satisfaction is
weighted sum of average passenger waiting time and average
passenger transit time. For passenger i, the waiting time is the
time interval between the arrival time and the pickup time

, and the transit time is the time interval between the pickup
time and the departure time . The objective function is as
follows:

(6)

(7)

Equations (6) and (7) imply that all the passenger-wise additive
objective functions can be rewritten in car-wise additive forms
by reorganizing the original form based on the passenger-to-car
assignment. When the coefficients and both equal 1, the
performance will be average passenger service time.

The overall problem is to minimize J (6) subject to pas-
senger-to-car assignment constraints (1), passenger-to-trip
assignment constraints (2), same direction constraints (3),
and capacity constraints (4). The decision variables are the
passenger-to-car assignment and the passenger-to-trip assign-
ment for each car. It can be seen that our formulation is an
integer programming formulation. The scale of our formulation
(i.e., the number of decision variable and constraints) is much
smaller than the two existing formulations. Moreover, the
formulation above applies to various traffic patterns like the
formulation in [6], since no specific assumptions are made
about them.
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IV. SOLUTION METHODOLOGY

In view of the hierarchical problem structure and the
car-wise additive property of the objective function, a two-level
optimization framework is developed in Section IV-A, opti-
mizing single car dispatching at the low-level, and optimizing
passenger-to-car assignment at the high-level. Key problem
structures are utilized to develop efficient algorithms for both
levels. At the low-level, an effective trip-based heuristic is in-
troduced in Section IV-B to optimize the single car dispatching
problems for individual cars. At the high-level, a hybrid
nested partitions and genetic algorithm method is developed in
Section IV-C to optimize passenger-to-car assignment.

A. Two-Level Optimization Framework

Taking advantage of the hierarchical problem structure and
the car-wise additive objective function, the original problem
formulation could be rewritten as follows:

(8)

subject to (1)–(4).
Since constraints (2)–(4) are only imposed on low-level deci-

sion variables, , the formulation above can be further
converted into1

(9)

where

(10)

From (9) and (10), a two-level optimization framework can be
naturally derived. Given a high-level decision variable ,
i.e., , the low-level optimizes the single car dispatching
problems (10) for individual cars and provide the optimized
performance to the high-level for the calculation of the objec-
tive function value in (9). Based on the evaluation from the
low-level, the high-level is then to optimize passenger-to-car as-
signment (9).

B. Low-Level: Optimizing Single Car Dispatching via a
Trip-Based Heuristic

To effectively solve the single car dispatching problem (10),
a trip-based heuristic is developed in [27] to sequentially decide
passengers to be served in each trip. The key idea is that the
optimal dispatching strategy should be a tradeoff between two

1This formulation is actually a bi-level programming formulation [25], [26].
The current research in bi-level programming mainly concentrates on solving
linear problems. Most of the existing methods make use of the linearity of the
problems, and hence cannot be extended to our case

factors: 1) serving more passengers in one trip to take advan-
tage of batch effect and 2) serving fewer passengers in one trip
to avoid extra long waiting of passengers who arrive later. To
determine which passengers to be served in the next trip (trip

), a list of passenger assignment candidates will first be se-
lected from unassigned passengers. For each candidate ,
constraints (3) and (4) can be easily verified, as the terms in the
left-hand side of these two inequalities, i.e., the number of pas-
sengers who travel down, , the number of passengers who
travel up, , and the number of passengers inside the car be-
tween any two floors, , can be easily calculated. The candi-
dates that satisfy both constraints will be evaluated by using a
carefully designed objective which takes the two above factors
into account. The assignment candidate with the minimum per-
formance is selected as the next trip. The process repeats until
the trip assignment of all the passengers is determined, implying
constraint (2) is satisfied. Therefore, the passenger-to-trip as-
signment generated will be feasible. Based on car dynamics (5),
the corresponding performance of the passenger-to-trip assign-
ment can be obtained.

Given a high-level passenger-to-car assignment, the low-level
will solve individual single car dispatching problems and
return the sum of the optimized performance values (divided
by ) as the performance of the given high-level decision
variable.

C. High-Level: Optimizing Passenger-to-Car Assignment via a
Hybrid Nested Partitions (NPs) and Genetic Algorithm Method

On the basis of the evaluation from the low-level, the high-
level is to optimize the passenger-to-car assignment by using
nested partitions (NPs) which has been proved to be powerful
for many difficult optimization problems including the assign-
ment problem [28]. The key idea of this method is to system-
atically partition the feasible decision space or region into sub-
regions, to identify the most promising subregion that is most
likely to contain the optimal solution through sampling, and then
to concentrate the computational efforts on this subregion. As
the iterations proceed, the most promising region is gradually
reduced by further partitioning, along with adjustment by back-
tracking if needed. “This method is simple, robust,” and “con-
verges to the global optimum in finite time with probability one”
[28].

1) Traditional Nested Partitions Method: To illustrate the ap-
plication of the traditional NP method at the high-level, an ex-
ample with elevators and passengers (Ex-
ample 2 in Section V) is used in the following. Nested parti-
tions performs search in the entire feasible region , i.e., all the

(12 4) binary matrices subject to passenger-to-car
assignment constraints (1). To facilitate NP’s application, each
feasible passenger-to-car assignment matrix will be represented
as a vector of length , where element
equals if passenger is assigned to car . This rep-
resentation automatically satisfies passenger-to-car assignment
constraints (1), turns the original constrained search problem
into an unconstrained one without enlarging the search space,
and consequently helps improve search efficiency. Then, the
feasible region is equivalent to the set of all the vectors of
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Fig. 4. Search tree of the traditional nested partitions method for a problem with four elevators and 12 passengers.

length 12, where each element can only take a value in the set
.

Refer to Fig. 4 for the searching tree of the traditional
NP method. In each iteration, there is a region
called the “most promising region” where the optimal solu-
tion is most likely to locate, e.g., the entire feasible region

at iteration 0 (since there
is no information about the location of good solutions) and
the region at iteration
1. The remaining region is the “surrounding region.”
Each most promising region is associated with a parameter
“depth” defined as the number of partitioning steps to obtain
the region starting from the entire feasible region without
backtracking, e.g., the depths of the two aforementioned most
promising regions are 0 and 1. The following two steps are
performed at iteration .

Step 1: Partitioning: The most promising region (k) is first
partitioned into subregions by using a partitioning scheme
which decides how the region will be divided, e.g., partitioning
the feasible region into four subregions by fixing the car assign-
ment of the first passenger at iteration 1. Together with the sur-
rounding region, there are disjoint subsets that cover the
entire region.

Step 2: Selecting the Next Most Promising Region: Each
of these regions is sampled by using a random sam-
pling scheme such as uniform sampling, and the performance
values at those randomly selected points are used to estimate
the promising index for each region, defined as the minimum
performance value of all the samples within the region. Local
search such as genetic algorithm can improve the estimation
of the promising indices by using the samples as initial points
and trying to find new samples with better performance [29].
If one of the subregions has the best promising index,
then it becomes the most promising region in the next iteration,

, and the remaining regions and the surrounding
region are aggregated as the new surrounding region. If the
surrounding region has the best promising index, the method
backtracks to a new promising region with a fixed
backtracking rule. The region becomes the next
surrounding region.

The process repeats until the most promising region becomes
a singleton or the computational time reaches its limit.

How to partition the most promising region and how to select
the next most promising region are two important components
of the nested partitions method. To make this method efficient,
key problem characteristics of elevator scheduling will be in-
corporated in the design of these two components to develop
a novel hybrid nested partitions and genetic algorithm method
(HNPGA) next.

2) Nested Partitions and Genetic Algorithm Method:
a) Defining the Partitioning Scheme: The partitioning

scheme determines how the most promising region will be
partitioned. In view of the sequential decision nature of elevator
scheduling [15], a natural partitioning step is to fix the assign-
ment of the next N unassigned passenger. Then, a promising
region of depth is defined by fixing the assignment of
the first passengers. The subregions of this region are
determined by assigning the next unfixed passengers to the

cars, so there will be subregions. Consider again the
example in Section C1 for illustration. A straightforward choice
of is one, as shown in Fig. 4. Nonetheless, since generally
the entire performance is not sensitive to the change of the
assignment of only one passenger, this partitioning scheme
may lead to difficulties in differentiating those subregions.
Therefore, it will be difficult to find the subregion most likely
to contain good solutions, leading to frequent backtracking,
and thus low efficiency, as will be demonstrated in Fig. 5 in
Section V. To avoid such difficulty, the partitioning scheme
should be able to generate subregions with large performance
variations so that NP can easily separate good subregions from
bad subregions. Therefore, compared to the number of all the
passengers , should be large enough to impact the entire
performance, but not too large to avoid heavy computational
burden for next step.

b) Identifying the Next Most Promising Region: With the
given partitioning scheme, the next is to estimate the promising
index for each subregion and to select the next most promising
region based on those indices. The comparison of all the sub-
regions and the surrounding region could be divided into two
substeps: 1) selecting the best subregion , which can be
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Fig. 5. Depth during the search in TNP.

viewed as “local optimization” and 2) comparing the best sub-
region with the surrounding region , which can be
viewed as “global verification and correction.” Both steps are
innovatively transformed to the optimization of the assignment
of a certain number of passengers, and will be solved by ge-
netic algorithm to take advantage of the “building block” prop-
erty [30] of elevator scheduling, i.e., two assignments with good
blocks/segments for different subgroups of passengers can be
combined to generate a better assignment. For ease of presen-
tation, the genetic algorithm based search is presented first, fol-
lowed by the two steps to identify the most promising region.
C.2.2.1. Genetic Algorithm Based Search

Genetic algorithm is an important module in our hybrid
nested partitions and genetic algorithm method. It is used twice
in each iteration of NP, one for selecting the best subregion in
C.2.2.2, and the other for the comparison of the best subregion
and the surrounding region in C.2.2.3. For both cases, it is used
to optimize the assignment of a group of passengers.

The chromosome is defined as a vector of length , where
element equals to if passenger

is assigned to car . The consistence between the definition of
the chromosome and the new representation in NP as defined
in C.1 makes genetic algorithm capable of being integrated into
the nested partitions framework perfectly. The fitness of each
chromosome is defined as the performance of the corresponding
assignment (6).

Two kinds of mutation operators are designed: 1) random
change of the car assignment of one passenger and 2) random
swap of the car assignments of two passengers. The first mu-
tation can balance the number of passengers assigned to each
car. The second mutation can fine tune the group of passen-
gers served by one car, while keeping the number of passen-
gers unchanged. The standard single point crossover operator is
used. Two assignments with good assignment segments for dif-
ferent subgroups of passengers can be combined by crossover to
generate a better assignment. By applying these operators, any
feasible passenger-to-car assignment could be achieved with a
positive probability from another feasible one. Therefore, the

ergodicity of the whole feasible solution space is guaranteed.
Moreover, the new assignments generated by these operators are
always feasible. This feature keeps the search within the feasible
solution space and then improves search efficiency.

The main steps of genetic algorithm are as follows.
Step 1) Initialize population with randomly generated fea-

sible passenger-to-car assignments and predeter-
mined ones such as good solutions from previous
iterations. Evaluate individual assignment’s fitness.

Step 2) Expand population through mutation and crossover.
Step 3) Select the next population based on fitness.
Step 4) Repeat Steps 1 to 3 for a certain number of times.

C.2.2.2. Selecting the Best Subregion
As mentioned in Section IV-C1, in the traditional NP method,

a group of samples will be taken in each of the subre-
gions, and starting with those samples, genetic algorithm will
run for generations to find good solutions which can repre-
sent the performance (promising index) of the subregion. The
subregion containing the best sample in the final popu-
lations will be selected as the best subregion . Since the
number of subregions is large, this substep could be time-
consuming. Based on the convergence proof of NP, the only re-
quirement for sampling is that each point in the entire solution
space has a positive probability to be selected. Therefore, there
is no need to take samples in each subregion. Instead, sam-
ples will be taken uniformly from the composite region of all
the subregions, i.e., the current most promising region , so
that each point could be selected with a certain positive proba-
bility. Starting with those samples, genetic algorithm in C.2.2.1
will run for generations to find good solutions in the current
most promising region, i.e., to optimize the assignment of the
remaining unassigned passengers. The subregion
containing the best sample in the final population of genetic al-
gorithm is selected as the best subregion . Compared with
traditional NP, the new best subregion selection substep in our
method would result in a great reduction of CPU time with little
expense of solution quality, as demonstrated in Example 2 in
Section V.

At iteration , this substep is to decide the assignment of the
next passengers based on the optimization of the remaining

unassigned passengers. It is clear that the dis-
patching of passengers who arrive early will affect passengers
who arrive later and the impact decreases as the time interval be-
tween their arrivals increases. This observation leads to the idea
that it might be sufficient to use part of future traffic informa-
tion to effectively assign current passengers. It should be noted
that decision made by using partial traffic information might not
be consistent with the one from full information. Thus a further
improvement is made in this substep. Only the assignment of
the next passengers is optimized by genetic algorithm to de-
cide the assignment of the passengers, where is an integer
between and . Consequently, the search of ge-
netic algorithm will be more efficient, as it is performed in a
smaller space. The solutions generated by genetic algorithm are
partial solutions in the sense that only the assignment of out
of the remaining unassigned passengers are fixed
in those solutions. The best partial solution in the final popula-
tion is used to determine the best subregion. This substep can
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be viewed as “local optimization” in the sense that the decision
on the assignment of the next passengers is made based on
local information (the optimization of the assignment of the next

passengers). Due to the possible inconsistency between de-
cisions made by using partial information and full information,
the selection of the best subregion might be biased, as will be
addressed in next.

C.2.2.3. Comparing the Best Subregion with the Surrounding
Region

To compare the best subregion and the surrounding re-
gion , samples from the two regions will be compared.
The samples from are constructed by fixing the assign-
ment of the next passengers to be the best partial solution
obtained in C.2.2.2 and randomly generating the assignment of
the remaining passengers. The samples
from the surrounding region are taken by uniform sampling. It
should be noted that the region is also demanded to
be sampled to avoid the negative impact from biased selection,
in order that the true best subregion still has a certain positive
probability to be selected. The samples from the three regions
form the initial population of genetic algorithm in C.2.2.1, and
genetic algorithm performs search in the composite region of the
three regions, i.e., the entire feasible solution. The best solution
in the final population of genetic algorithm is used to identify the
next most promising region as follows. If the best so-
lution lies within the current most promising region , then
the subregion containing this solution is selected as .
If the best solution lies within the region , this method
needs to backtrack to choose a region with depth less than and
containing the best solution as , e.g., a region where all
the solutions have the same assignment of the first pas-
sengers as that in the best solution2. This substep can be viewed
as “global verification and correction” in the sense that local de-
cision in C.2.2.2 will be verified and corrected by using global
information (the optimization of the assignment of all the pas-
sengers).

c) Convergence Property: The convergence proof of the
traditional NP method requires that “the stochastic process

is a Markov chain” [28], implying no information
in the current iteration can be passed down to the next. All
the samples from previous iterations should be discarded, and
new samples should be regenerated for the current iteration
independently of previous iterations. The so called “fresh
starting” problem would lead to loss of information between
iterations and hence impair search efficiency [31]. Several NP
variants with inheritance have been developed to address this
problem [31], [32]. The downside of these methods is that the
convergence cannot be guaranteed. Our method also adopts the
inheritance idea, i.e., good samples of the previous iteration
are inherited to the current iteration. Although the independent
sampling requirement in the original convergence proof is
violated, our method is still convergent by taking advantage
of the global convergence property of genetic algorithm [33]
which is used in each iteration of nested partitions to search in
the entire feasible region.

2This backtracking rule will be used in all the NP methods in Section V.

d) Discussion: The hybrid nested partitions and genetic
algorithm method (HNPGA) applies not only to the elevator
scheduling problem, but also to those sequential decision prob-
lems which satisfy the two following characteristics. 1) The de-
cisions in a short period only have a minor impact on the global
performance, whereas the decisions in a reasonably long period
will have a large impact on the global performance. 2) The ear-
lier decisions have impact on the later, and the impact decreases
as their time interval increases. It should also be noted that while
genetic algorithm is an important module in the nested parti-
tions framework, this framework is not restricted to genetic al-
gorithm. Other algorithms which fit the characteristics of the
problem to be solved can be integrated into this framework.

V. NUMERICAL RESULTS AND INSIGHTS

The above method has been implemented in Matlab and
tested on an AMD Atholon GHz Windows PC with
1 GB RAM. Extensive numerical testing has been conducted.
A building with ten floors is considered in the following three
examples. The number of elevators varies from two to four and
the length of the look-ahead time window varies from 30 s to
120 s.3 To show the incremental contribution of our paper over
[6], the planning horizon of all the examples are set to a single
time window. Example 1 is to demonstrate the near-optimality
of solutions, the value of future traffic information, and the
value of the new door action control method. Example 2 com-
pares our method with the traditional NP method and its several
variants, and demonstrates values of the new NP features in our
method. Example 3 compares our method with a pure standard
genetic algorithm and demonstrates the value of the nested
partitions framework.

Three traffic patterns are examined, including up-peak, down-
peak, and interfloor. The generation of traffic data used in the
following examples is based on the testing data in [6]. For all
traffic patterns, arrival times are independent and uniformly dis-
tributed over the entire time window. For up-peak, arrival floors
are set to the lobby, and destination floors are independent and
uniformly distributed between the fourth and the ninth floors.
For down-peak, the destination floors are set to the lobby, and
arrival floors are independent and uniformly distributed between
the fourth and the ninth floors. For interfloor traffic, arrival floors
are independent and uniformly distributed between the first and
the sixth floors, and destination floors are independent and uni-
formly distributed between the fourth and the ninth floors. The
related parameters for elevators are taken from Elevate [34] in
Table I. The objective function is the service time (i.e.,

).
Example 1: This example is to demonstrate solution near-op-

timality under various traffic patterns and different traffic densi-
ties, the value of future traffic information, and the value of the
new door action control method. The number of elevators in the
building is two. Two data sets are tested: one is for a 120-s time

3The length of the look-ahead time window in the rolling horizon scheme [6]
depends on information collection and/or prediction capability, service capacity,
traffic load, and computational capability. Different lengths of time windows
might be used under different problem settings and computational constraints.
How to determine the window length, however, goes beyond the scope of this
paper.
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TABLE I
ELEVATOR CONFIGURATIONS

TABLE II
RESULTS FOR VARIOUS TRAFFIC PATTERNS

(DATA SET 1: 120 S, 1 PERSON/10 S)

TABLE III
RESULTS FOR VARIOUS TRAFFIC PATTERNS (DATA SET 2: 60 S, 1 PERSON/5 S)

window with a constant arrival rate of one passenger per 10 s4;
the other is for a 60-s time window with a constant arrival rate
of one passenger per 5 s. Both data sets have the same number
of passengers.

To demonstrate the near-optimality of solutions, our method
(HNPGA) will be first compared with a trip-based branch and
bound (BB) method which can generate optimal solutions [35].
The new door action control method is used in both methods.
The parameters N and for HNPGA are set to 3 and 6 based on
our testing experience, respectively. The influence of varying N
and will be examined in Example 2. The population size
and the generation number in the genetic algorithm module
in HNPGA are set to 5 and 10, respectively. The crossover prob-
ability and the mutation probability of the genetic algorithm
module for up-peak, down-peak and interfloor are set to 0.6 and
0.7, 0.7 and 0.5, and 0.6 and 0.9, respectively. The HNPGA
method does not terminate until the most promising region be-
comes a singleton. The BB method does not terminate until it
has found the optimal solution. Results from ten Monte Carlo
simulation runs for the two data sets are summarized in Tables II
and III.

For data set 1 (light traffic), with an average CPU time less
than 4 s, the average gaps between the two methods for the three
traffic patterns are 0.97%, 1.86%, and 3.74%, showing that near
optimal solutions are obtained within rather short CPU times for
various traffic patterns under light traffic. As the traffic pattern
changes from up-peak to down-peak to interfloor, the gaps be-
tween the two methods increase because the scheduling problem
becomes harder and harder, as demonstrated by the average
CPU times for Branch and Bound to find the optimal solutions
for the three cases. For both methods, the average service time
for interfloor is the smallest among the three traffic patterns.
The reason might be as follows. On the one hand, the average

4This data set is taken from [6] for later comparison with existing results.

passenger travel distance for interfloor is the lowest among the
three traffic patterns, as neither the origin floors nor the desti-
nation floors are restricted to the lobby. On the other hand, cars
will have more stop floors under interfloor traffic, as the traffic
demand for interfloor will have both multiple origin floors and
multiple destination floors, causing delay in serving passengers
yet to be delivered. For the light traffic, the delay caused by stop
floors is minor because the interval of arrivals of passengers is
larger, so that the benefit brought by shorter average distance
dominates the downside caused by more stop floors.

For data set 2 (heavy traffic), with an average CPU time
less than 4 s, the average gaps are 7.78%, 8.99%, and 9.53%,
demonstrating near-optimality of solutions and computational
efficiency for various traffic patterns under heavy traffic.
Similar to the light traffic case, the gaps between the two
methods increase as the traffic pattern changes from up-peak
to down-peak to interfloor. As opposed to the light traffic, the
average service time for interfloor is the largest, because the
downside caused by more stops floors dominates the benefit
brought by shorter average distance.

For the same traffic pattern, the average service time for data
set 2 (heavy traffic) is larger than data set 1 (light traffic) because
elevators will be busier in heavy traffic; the gap between the
two methods for date set 2 is larger because the case under high
arrival rate is harder to solve than the case with low arrival rate,
as shown by the CPU times for Branch and Bound to obtain the
optimal solutions.

To demonstrate the value of future traffic information and the
value of the new door action control method, four algorithms
will be compared, including the following.

1) HNPGA: the method presented in Section IV.
2) HNPGAD (HNPGA with dwell time): the same as

HNPGA except enforcing that elevators cannot leave stop
floors until the door dwell time expires.

3) Lagrangian Relaxation (LR): the method in [6] with the
traditional door action control method.5

4) HNPGAT (HNPGA with three-passage heuristic): the
same as HNPGA except that the single car dispatching
strategy is replaced by a three-passage heuristic commonly
adopted in certain real elevator systems [36], in which
advance information is not utilized and the traditional door
action method is adopted.

The second and fourth methods have the same settings for ,
, the genetic algorithm module, and the stopping criteria as

those in the first one. Results from ten Monte Carlo simulation
runs for the two data sets are summarized in Tables IV and V.

For data set 1, it can be seen that the methods using future
traffic information (i.e., HNPGA, HNPGAD, and LR) outper-
form the one without using such information (i.e., HNPGAT).
Our method HNPGA is 7.90% better than HNPGAD on av-
erage, showing the benefit of not restricting the elevators must
leave the stop floors once the door dwell time expires in the
new door action control method. Our method also outperformed
the traditional action control based methods, 9.73% better than
LR on average, and 22.79% better than HNPGAT on average.
For data set 2, similar results can be obtained. The HNPGA is

5In [6], only the first data set is tested.
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TABLE IV
RESULTS FROM DIFFERENT METHODS (DATA SET 1: 120 S, 1 PERSON/10 S)

TABLE V
RESULTS FROM DIFFERENT METHODS (DATA SET 2: 60 S, 1 PERSON/5 S)

TABLE VI
SCHEDULING DETAILS OF A SAMPLE RUN FOR UP-PEAK

4.27% better than HNPGAD on average and 15.60% better than
HNPGAT on average. This example shows that one can gain sig-
nificant benefit by using future traffic information and the new
door action method.

To further illustrate the new door action method, the sched-
uling details from one of the Monte Carlo runs for up-peak is
listed in Table VI. Elevator 1 stays at floor 0 at time 0 to serve
passengers 2 and 3 in trip 1. After passenger 2 enters elevator
1 at time 13.26 (arrival time 11.26 plus loading time 2 s), ele-
vator 1 will stay at floor 0 to wait passenger 3 to board even if
door dwell time has already expired. Elevator 2 arrives at floor
0 at time 113.17 to serve passenger 12 in trip 4. Elevator 2 will
immediately close the door after passenger 12 comes in rather
than waiting until door dwell time expires.

Example 2: This example is to demonstrate the values of
the new NP features of our method, including the partitioning
scheme, the most promising region selection method, inheri-
tance, and decision-making with local information. The number
of elevators is four. The up-peak traffic is examined under two

TABLE VII
RESULTS FOR TNP AND HNPGA UNDER UP-PEAK TRAFFIC

traffic densities with various look-ahead time windows. The ar-
rival rate for the light traffic is one passenger per 5 s and the
arrival rate for the heavy traffic is two passengers per 5 s.6 The
look-ahead time window varies from 30 to 120 s, with a constant
step of 30 s. Our method (HNPGA) will be first compared with
the traditional nested partitions method (TNP). The population
size and the generation number in the genetic algorithm
module in the two methods are set to 5 and 10, respectively.
The crossover probability and the mutation probability of the
genetic algorithm module are set to 0.6 and 0.7, respectively.
Both methods do not terminate until the most promising region
becomes a singleton. The detailed configuration of NP features
for TNP and HNPGA are as follows.

1) TNP: , the traditional most promising region selec-
tion method (in which all the subregions are evaluated), no
inheritance, (the assignment of next pas-
senger is decided through the optimization of all the unas-
signed passengers).

2) HNPGA: , the new most promising region selection
method, with inheritance, (the assignment of the
next 3 passengers is decided through the optimization of
the next six passengers).

Results from ten Monte Carlo simulation runs are summarized
in Table VII.

It can be seen that compared with TNP, our method can gen-
erate better solutions, except slightly worse in the 30-s light and
heavy traffic cases, within much shorter CPU times for various
lengths of time windows and different traffic densities. The im-
provement of solution performance and the significant reduction
of CPU times show the value of those new NP features. It should
be noted that it is not meaningful to compare the results under
different time windows for either method because the results are
only for a snapshot problem instead of the overall problem, and
the impact of the look-ahead time window length is out of the
scope of this paper.

To further illustrate how individual features contribute to our
method, three intermediate methods are constructed by adding
new features one at a time, including the following.

1) TNP1: , the traditional most promising region se-
lection method, no inheritance, .

6The settings of the arrival rates here are different from those in Example 1
due to the enlarged service capability (the increased number of elevators).
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TABLE VIII
RESULTS FROM DIFFERENT METHODS FOR UP-PEAK

2) TNP2: , the new most promising region selection
method, no inheritance, .

3) TNP3: , the new most promising region selection
method, with inheritance, .

The three methods have the same parameter setting for the ge-
netic algorithm module as TNP and HNPGA. The three methods
together with TNP and HNPGA are tested on the up-peak traffic
in a 60-s horizon, with a constant arrival rate of one passenger
per 5 s. All the five methods do not terminate until the most
promising region becomes a singleton. Results from ten Monte
Carlo simulation runs are summarized in Table VIII.

The TNP method has the largest iterations depth ratio,7 which
indicates the frequent occurrence of backtracking, as depicted
in Fig. 5, leading to low efficiency of NP and large amount of
CPU time. By increasing N to be three in TNP1, the iterations
depth ratio decreases to be close to 1, demonstrating the value
of the new partitioning scheme. Nevertheless, the CPU time in-
creases largely to 76.2 s. The reason is that as the number N
increases, the number of subregions increases to 64 and the tra-
ditional most promising region selection method requires that
all the subregions must be evaluated. By adopting the new most
promising region selection method in TNP2, the CPU time de-
creases significantly to 5.6 s with slightly increase of the av-
erage service time, demonstrating the value of the new most
promising region selection method. By introducing the inher-
itance feature in TNP3, the average service time slightly de-
creases from 20.2 to 19.8 s, showing the value of introducing
this feature. By using local/partial information instead of whole
information in HNPGA, the CPU time further decreases from
5.5 to 3.3 s. Of all the five methods, our method HNPGA has
the smallest average service time and CPU time, and close-to-1
iterations depth ratio, demonstrating the values of the new NP
features.

Example 3: This example is to compare our hybrid method
HNPGA and the pure standard genetic algorithm in C.2.2.1
using the traffic data in Example 2. The parameter settings
and stopping criteria for our method are the same as those in
Example 2. The pure genetic algorithm (PGA) has the same
population size as the genetic algorithm module used in our
method. For each problem setting, PGA will spend the same
amount time as HNPGA. Results from ten Monte Carlo simu-
lation runs are summarized in Table IX.

Under light traffic, the relative performance differences of the
two methods for the four time windows of lengths 30, 60, 90,

7The iterations depth ratio is defined as the ratio of the average number of
iterations to the maximum depth of the searching tree.

TABLE IX
RESULTS FOR GA AND HNPGA UNDER UP-PEAK TRAFFIC

and 120 s are, respectively, 0, 2.96%, 4.05%, and 5.51%. Under
heavy traffic, the relative differences for the four windows of
lengths 30, 60, 90, and 120 s are, respectively, 2.15%, 4.42%,
6.25%, and 8.06%. It can be seen that our hybrid method can im-
prove the pure genetic algorithm by embedding it in the nested
partitions framework, and the improvement increases as more
information becomes available or the traffic becomes heavier.
The results show the value of the nested partitions framework
which concentrates the computational resources on promising
regions that can be quickly identified by using local/partial fu-
ture traffic information.

VI. CONCLUSION

One important trend to improve elevator systems is to use ad-
vance traffic information. It remains as an open and challenging
issue to develop new scheduling methods that can effectively
utilize advance traffic information. A two-level formulation is
presented in this paper, with detailed car dynamics embedded
in simulation models for performance evaluation. Taking advan-
tage of advance information, a new door action control method
is developed to increase the flexibility of elevators. In view of
the hierarchy structure of this problem, a two-level optimization
framework is developed, i.e., optimizing single car dispatching
at the low-level with an effective trip-based heuristic, and op-
timizing passenger-to-car assignment at the high-level with a
novel hybrid nested partitions and genetic algorithm method
which can be extended to solve certain class of sequential de-
cision problems. Numerical results demonstrate the near-opti-
mality of solutions, computational efficiency, and values of ad-
vance information, the new door action control method, and new
features of the hybrid method. Further improvement is needed
to reduce CPU time for online implementation.
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