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Abstract-With the growing trend of extreme weather events 
in the Northeast U.S., a region of dense vegetation, evaluating 
hazard effects of wind storms on power distribution systems 
becomes increasingly important for disaster preparedness and 
fast responses in utilities. In this paper, probabilistic wind storm 
models for the study region have been built by mining 160-year 
storm events recorded in the National Oceanic and Atmospheric 
Administration's Atlantic basin hurricane database (HURDAT). 
Further, wind storms are classified into six categories according 
to NOAA criteria and IEEE standard to facilitate the evaluation 
of distribution system responses under different levels of hazards. 
The impacts of wind storms in all categories are accurately eval
uated through a Sequential Monte Carlo method enhanced by a 
temporal wind storm sampling strategy. Extensive studies for the 
selected typical distribution system indicate that our models and 
methods effectively reveal the hazardous effects of wind storms in 
the study region, leading to useful insights towards building better 
system hardening schemes. 

Index Terms-Critical facilities, distribution reliability, hard
ening planning, hazard, hurricane, wind storm. 

1. INTRODUCTION 

F REQUENT wind storms have severely affected the North
east U.S. in the past few years. For instance, tropical storm 

Irene hit the State of Connecticut (CT) on August 28, 2011, 
causing sustained interruptions of electric service up to 11 days 
for over 800 000 customers and a total damage of about $200 
million in CT [1], [2]. On October 22, 2012, hurricane Sandy 
swept the Northeast U.S. causing at least $50 billion in dam
ages to this area [3], [4], More than 850000 customers in all 
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149 cities and towns served by Connecticut Light & Power suf
fered prolonged outages. The power outages lasted for over a 
month in some area of New York City. Analyzing power distri
bution system risks under extreme weather, therefore, is of sig
nificance in identifying system weaknesses, designing system 
hardening schemes and thus enhancing disasters preparedness 
in the Northeast. 

Impacts of extreme weather on power systems have previ
ously been studied. In IEEE Standard 346, weather conditions 
are divided into three categories: normal, adverse, and major 
storm disaster [5]. The National Oceanic and Atmospheric Ad
ministration (NOAA) developed the Saffir-Simpson Hurricane 
Wind Scale (SSHWS) that classifies hurricanes into 5 levels 
based on hurricane's sustained wind speed [6]. A three-state 
weather model was presented in [7] to incorporate failures 
occurred under major adverse weather conditions, following an 
observation that reliability evaluation results obtained without 
considering weathers could be optimistic and misleading. Ref
erence [8] presented a probabilistic hurricane simulation model 
established for assessing the Florida utility damage and risks 
under hurricanes. References [9] and [10] studied seasonal 
effects of wind and lighting on distribution system reliability, 
where time-varying failure rates based on partitioned weather 
severity levels were presented. 

Actually, the effects of extreme weather on distribution sys
tems are closely correlated to the region affected because of the 
specific elevation, terrain and vegetation in the particular region. 
The U.S. Northeast is a region with an appreciably high vege
tation coverage rate. For instance, the forest cover rate of CT 
even reaches to 75% [11]. Thus power outages in the Northeast 
regional distribution systems are largely caused by blow-over or 
failures of trees and poles during wind storms. However, an ap
propriate model for this region that reveals the impacts of wind 
storms has not been established. Moreover, the wind speeds of 
storms impacting the Northeast area fall into particular ranges, 
for which existing wind storm classifications in the literatures 
may be unsuitable. 

Main contributions of this paper include: 1) Probabilistic 
wind storm models including occurrence, intensity, and dura
tion models are established by mining the HURDAT database 
from NOAA. These models capture the effects of wind storms 
on the Northeast region, and are used to generate accurate 
wind storm samples for system risk assessment. 2) Outage 
event records from Northeast Utilities are used to parame
terize the weather-dependent component failure models. 3) An 
enhanced sequential Monte Carlo approach is developed to 
quantify system risks under six different categories based on a 
new storm classification criteria established for the Northeast 
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Cause 

Tree 

Equipment 

Animal 

Unknown 

Others 

Total 

TABLE I 
DISTRIBUTION SYSTEM FAILURE STATISTICS 

The number offailures Percentage 

3213 55.2% 

715 12.3% 

500 8.6% 

576 9.9% 

817 14.0% 

5821 100% 

region. The categorized risks in distribution systems provide 
more comprehensive characterization of wind storm hazards, 
which will facilitate utility companies and regulatory bodies 
to design response schemes against different categories of 
storms. CT is taken as a typical example for describing the 
process which is applicable for other regions in the Northeast. 
Responses of distribution systems to all six categories of wind 
storms are simulated using the Sequential Monte Carlo (SMC) 
method. Besides, the minimal path and zone partitioning ap
proaches in [12] are adopted to accelerate the process of system 
state assessment. 

The organization of this paper is as follows. Section II de
scribes the wind storm modeling procedures for the Northeast 
regional systems. Section III discusses the parameterization of 
weather-dependent component models. Section IV is devoted 
to the reliability evaluation of distribution systems using an en
hanced SMC method. Test cases and result analysis are summa
rized in Section V, followed by Section VI that concludes the 
paper. 

II. WIND STORM MODELING FOR NORTHEAST 

REGIONAL SYSTEMS 

The causes of distribution system failures based on Northeast 
Utilities' (NUs') outage records for eight selected towns during 
2007-2011 [13] are shown in Table I. 

From the table, it is clear that tree failures are responsible for 
the majority of system failures because trees are often in close 
proximity to overhead feeders, and the high wind during wind 
storms will result in widespread power outages in the Northeast 
region. It is therefore necessary to build accurate probabilistic 
models to quantify the effects of wind storms on system compo
nent failures. For any non-weather related damages (Le., those 
due to aging or animals), their impacts have been statistically 
mapped into the component failure rates and repair times under 
normal weather conditions. 

In this section, the HURDAT from NOAA will be used to 
establish the wind storm models suitable for the reliability eval
uation of the U.S. Northeast distribution systems. The state of 
Connecticut is taken as an example to present the modeling 
procedures. 

A. Data Source 

HURDAT includes 1476 wind storms in the North Atlantic 
region during 1851-2011 with their detailed occurrence time, 
translational velocity (measurement of storm movement), Sus
tained Surface Wind Speed (SSWS, winds measured at a stan
dard height of 10 m over a I-min interval), central pressure, 
etc. First, two screening criteria are used for selecting the wind 
storms affecting CT. 

~ -- -- --- -=-:-:::-=-:::-:::--~----- -
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1) Storms Passing Through Connecticut: The area of CT 
covers the range of its latitude (400 58'N-42°03'N) and lon
gitude (71 0 4 7'W _73 0 44'W). By comparing the storm tracks 
with the area boundary, we can count the number of the storms 
passing through CT. 

2) Storms Affecting Connecticut: Some storms did not pass 
through CT directly, while still impacting it. Utilities will typi
cally record these storms; based on the records, the list of these 
storms can be obtained. Then, their detailed information such as 
wind speed is derived from HURDAT. 

The two screening criteria will overlap with each other; after 
excluding the overlaps, all the storms used to build the wind 
storm model for CT are listed in Table X (see the Appendix). 
Wind storms are rare events; thus, each data point has its unique 
contribution to the statistical modeling. In order to increase the 
fitting accuracy, we choose to use all the data points and adopt 
the maximum likelihood method to ensure the accuracy of the 
models. 

B. Wind Storm Occurrence Probability Model 

Occurrence frequency model determines the number of wind 
storms and the intervals between successive wind storms during 
a specific period. Homogeneous Poisson (HP) is a commonly 
probabilistic function to model the wind storm occurrence 
[14]-[16], and the HP function can be described by 

P[N(t)=k]=(~(\-rlt, k=0,1,2, .. ·. (1) 

In the period of (0, tJ, P[N(t) = k] is the probability that the 
number of wind storms is k, TI refers to the average wind storm 
occurrence rate, and t is the time period considered. 

Based on (1), the occurrence interval time T of wind storms 
is demonstrated to be exponentially distributed [16]: 

_ {T1e-'1t, t > 0 
iT - 0, t:::; O. (2) 

Therefore, in Monte Carlo simulations, T can be simulated 
by the sequential sampling [17]: 

1 
T = --lnU (3) 

TI 

where U is a uniformly distributed random number between 
[0,1]. As shown in Table X, there are 32 storms that affected 
CT during 1851-2011 (161 years), thus 'T/ = 32/161 = 0.1987 
occurrence/year (occ./yr). 

C. Wind Storm Intensity Model 

The potential damage (quantified by weather-dependent 
component models introduced in Section III) of a wind storm 
is strongly related to the storm intensity, which is described 
by the SSWS of the storm. In this section, SSWS probability 
distribution is fitted using a maximum likelihood method 
based on the historical records shown in Table X [18], [19]. 
Fig. 1 illustrates the fitted curves based on Weibull, Normal 
and Lognormal distributions. The distribution fitting results 
indicate that Weibull distribution has a maximum likelihood 
(Weibull: 74.54%, Normal: 72.56%, Lognormal: 63.48%) and 
its distribution function is shown as follows: 

f() (3 (3-1 _(!!l.)~ 
X = a(3 x e u 
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Fig. I. Distribution fitting oftbe SSWS for wind storms. 

TABLE II 
PROBABILITY DISTRIBUTION PARAMETERS OF THE SSWS 

Parameter 

a 
p 

Estimate 

50.12 
4.29 

TABLE III 

Std. Err. 

2.16 
0.61 

WIND STORM CLASSIFICATION CRiTERIA 

Wind storm category 
Normal 

Major Storm 
Tropical Storm 
Cat.l Hurricane 
Cat.2 Hurricane 
Cat.3 Hurricane 

Sustained suiface wind speed(knofs) 
<40 

40-57 
57-65 
65-83 
83-96 
>96 

where!j > 0 is the shape parameter and a > 0 is the scale 
parameter. Distribution fitting results of {1 and 0: are listed in 
Table n. 

Then, the SSWS of wind storms can be sampled using the 
following formula [17]; 

1 
X = o:(-lnU)i3 (4) 

where U is a uniformly distributed random number between 
[0,1]. 

The category (cat.) of a wind storm is a significant factor 
considered by utility in the preparation for and response to the 
storm. As can be seen in Fig. 1, the wind speeds of wind storms 
in the Northeast region range from 10 knots to 80 knots. It has 
been predicted that the chance of having hurricanes with wind 
speeds higher than 80 knots is increasing in the Northeast U.S. in 
this century [22]. Therefore, wind storms are classified into six 
levels based on NOAA's SSHWS and the weather categories of 
IEEE Standard 346. The criteria for the classification are shown 
in Table Ill. 

D. Wind Storm Duration Model 

Storm duration model gives the duration of a wind storm for 
a specific region, and can be used to distinguish wind-storm re
lated failures and non-weather related ones. However, the chal
lenge is that, for a specific region such as CT or a town of CT, 
the storm information in the HURDAT is recorded every six 
hours, which is close to the wind storm durations. The coarse 
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Fig. 2. Distribution fitting of tbe translation velocity for wind storms. 

TABLE IV 
PROBABILITY DISTRIBUTION PARAMETERS OF THE TRANSLATION VELOCITY 

Parameter 

m 
IT 

Estimate 

2.34 
0.70 

Std. Err. 

0.0035 
0.0025 

data resolution makes it challenging to estimate the storm du
ration. To resolve this challenge, a widely used engineering ap
proach is adopted. Area affected by a storm is assumed to be a 
circle, and its radius can be calculated using an empirical model 
[21]. Base on the model, the size of hurricane for CT is about 
76 miles (circle diameter), which means a wind storm can af
fect the whole state in a short period once it makes landfall on 
CT. Therefore, area affected by storms is omitted in duration 
calculation, and it is reasonable to assume that within the re
gion, the translation velocity of wind storms is constant, and 
their translation direction is a straight line. These assumptions 
help obtain reasonably accurate estimations of storm durations 
based on limited data. 

1) Translation Velocity Probability Model: Probability 
model of translation velocity is established by distribution 
fitting and the lognormal distribution is chosen to model the 
translation velocity [18], [19]. The function of the lognormal 
distribution is described by 

1 1.(LnC-m)2 f(c) = --e- 2 -u-

cV27ra 
(5) 

The maximum likelihood method is then used to determine 
the parameters a and m by probability distribution fitting based 
on HURDAT. The fitted curve is illustrated in Fig. 2 and the 
resulting a and m are presented in Table IV. 

Based on the fitted probability distribution, translation veloc
ities of wind storms can be calculated by [17] 

(6) 

where Z is a random number following the standard normal 
distribution. 

2) Wind Storm Duration Calculation: The shape ofCT is an 
approximate rectangle and its width and length are 70 miles and 
110 miles, respectively. If c is the translation velocity of a wind 
storm sampled by (6), then the shortest duration of the storm 
within CT will be Dm .in = 70/c hours, and the longest dura
tion will be Dmax = \1'702 + 1102 / c hours. It is assumed that 
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the duration is uniformly distributed between the shortest dura
tion and the longest duration. Therefore, in the SMC process, 
the duration D can be generated by sampling a uniformly dis
tributed number between [Dmin' Dma,,,,]. 

III. PARAMETERIZATION OF WEATHER-DEPENDENT 

COMPONENT MODELS 

Accurate weather-dependent component models are indis
pensable to quantify the reliability performance of distribution 
systems in the Northeast U.S. under various wind storms. In 
this section, weather-dependent failure rate model is described; 
failure proportions and annual expected durations of different 
weather conditions are determined to parameterize the model. 
Weather-dependent repair time model is also introduced. Its 
parameters are determined by the average restoration time 
statistics of customers in NU's actual distribution systems. 

1) Component Failure Rate Model: In the Northeast U.S., 
failures are largely due to trees and poles falling down (see 
Table I) and their toppling are caused by the pressure of high 
wind. It is generally accepted that the pressure exerted on trees 
and poles is proportional to the square of wind speed [10], 
[25]-[27], which is the SSWS for wind storm. For instance, 
simultaneous measurements of wind speed and turning moment 
of a group of trees were used in [27] for analyzing the wind 
and tree interaction. A quadratic model was found to be the 
best fit to the data of turning moment and wind speed near the 
canopy top. Therefore, failure rates of components during wind 
storms are formulated to be proportional to the square of the 
wind speed: 

[ ( w2(t) )] 
>'w'ind [wet)] = 1 + (X -2-.- - 1 >'n01"'" 

Wcnt 
(7) 

where wet) is the wind speed at time t; Wcrit is the critical 
wind speed that is determined based on Table III (the proce
dures can be found in the Appendix); >'nO'I'11I, is the failure rate 
under normal weather conditions and it can be obtained from 
NUs' historical records statistics. Parameter (X is the scaling 
factor to be determined; its derivation is based on [10] and is 
also summarized in the Appendix for easy reading. To parame
terize (x, failure proportion of each type of weather conditions, 
annual expected durations of wind storms and normal weather 
must be known and the determination processes are introduced 
as follows. 

a) Failure proportion ofwind storms and normal weather 
conditions: First, the failures are classified into two categories: 
occurring under normal weather and wind storms based on the 
Weather Type recorded in NU's data. Then, failure statistics are 
conducted by taking one of the feeders as an example. The sta
tistics results are listed in Table V. 

As can be seen in Table V, the proportion of failures that 
occurred under normal weather can be calculated by Fn = 
82/131.8 = 0.622; Thus, the proportion of failures that oc
curred under wind storms is Fws = 1 - Fn = 0.378. 

b) Annual expected durations of wind storms and normal 
weather conditions: Based on the probability distribution 
fitting results shown in Table IV, the expected translation 
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TABLE V 
FAILURE STATISTICS RESULTS OF THE EXAMPLE FEEDER 

~ Weather 2007 2008 2009 2010 2011 Average 
Conditions 

Normal 80 84 69 112 65 82 
Wind storm 24 56 24 37 108 49.8 

Total 104 140 93 149 173 131.8 

TABLE VI 
RESTORATION TIME STATISTICS OF THE EXAMPLE FEEDER 

2007 2008 2009 2010 2011 Average 

Normal 15719 13703 7980 14849 8368 12124 
OMC(hr) Major Storm 4818 40501 3594 17060 22592 17713 

Irene . . . 352324 352324 
Nonnal 7775 7793 4558 6030 3587 5949 

NCA MajorStonll 496 5917 610 2569 1045 2127 
Irene - - 3053 3053 

Normal 2 2 2 2 2 2 
RES(hr) Major Stonn 10 7 6 7 22 10 

Irene - - - 115 115 

velocity of wind storms is E( v) = 13.26 mph. The expected 
duration ofa single wind storm in CTis E(Dws) = 7.56 hours, 
which is obtained using the approach introduced in Section II. 
The annual expected duration of wind storms can then be 
calculated by Dws = ''lE(Dws) = 1.5 hours, where 11 
is the occurrence probability of wind storms in (3). Thus, 
the expected duration of normal weather conditions is 
Tn = 8760 - Dws = 8758,5 hours. Failure proportion 
(Fws and F,,) and annual expected durations (D1VS and Tn) of 
wind storms and normal weather conditions can then be used 
to determine the parameter (X for the example feeder (see the 
Appendix). 

2) Component Repair Time Model: Component repair time 
varies directly with weather categories, locations and types of 
faulty feeders and can be expressed as follows: 

r(cat., location, type). 

It is challenging to find an analytic form of r( .). Therefore, an 
engineering approach is adopted. In order to determine compo
nent repair times, the average restoration time of customers for 
a specific failure is defined by 

RES = OMO 
NOA 

(8) 

where OMC is the outage minutes of customers, and NCA is the 
number of customers affected. 

As shown in Table VI, OMC, NCA and RES of the example 
feeder under each type of weather conditions are obtained based 
on NU's records. Based on Table VI, the RES of 2007-2011 
under normal weather, major storm, and tropical storm Irene are 
2, 10, and 115 hours, respectively. For the backbone feeder, it 
is reasonable to assume that individual component repairs are 
conducted in a fairly close time, Thus the mean repair time T' 

of the backbone feeder will be close to the RES (with modifi
cation based on engineer's judgment). Further, repair times 'f' 

under Category 1--Category 3 hurricanes are estimated based 
on NUs' response times under these weather conditions, The 
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TABLE VII 
MEAN REPAIR TIMES UNDER DIFFERENT CATEGORY OF WEATHER CONDITIONS 

Wind storm category 

Normal 
Major storm 

Tropical storm 
Cat. I Hurricane 
Cat. 2 Hurricane 
Cat. 3 Hurricane 

Repair time (hours) 
Backbone Lateral 

2 3 
6 12 

120 336 
144 403 
173 484 
207 581 

repair time ratios between backbone and lateral feeders are es
timated from NU's statistics. Therefore, the values of r under 
all six categories of weather conditions are obtained as shown 
in Table VII. 

When the weather-dependent failure rate and repair time 
models are determined, component failure rates and repair 
times are assumed to be exponentially distributed [20] and the 
time to failure (TTF) and time to repair (TTR) of components 
can be simulated using the Inverse Transform Method [17]. 
The TTF and TTR then will be used in reliability evaluation to 
reflect the impacts of wind storms. 

It should be noted that, for a region outside of the Northeast, 
the risk assessment method in this paper is still applicable for 
evaluating hazards caused by wind storms. In this case, how
ever, wind storm may no longer be the major contributing factor 
for system risks in such a region, and it is out ofthe study scope 
of this paper. In this paper, we take the State of Connecticut as a 
typical example to facilitate the discussion of the proposed risk 
assessment procedures, which are equally applicable for other 
regions in the Northeast. First, wind storm datasets for any re
gion of interest are selected from NOAA databases by using 
the screening criteria presented in Section II-A. Then, wind 
storm models can be established using the method introduced 
in Sections II-B, C, and D. Further, weather-dependent models 
of system components for the specific region can be established 
based on the corresponding outage event records as described 
in this section. Therefore, following the procedures presented 
in this paper, one can perform a risk assessment for any feeder 
in any region vulnerable to wind storms. 

IV. SEQUENTIAL MONTE CARLO SIMULATION 

Due to its scalability, flexibility and accuracy, an enhanced 
Sequential Monte Carlo simulation method is adopted for 
assessment the reliability of the U.S. Northeast distribution 
systems under wind storms. The models of large real distri
bution systems including embedded generation and micro grid 
[12] and the impact assessments for multiple categories of 
wind storms are integrated into the SMC simulation method to 
facilitate the reliability evaluation considering various weather 
conditions. 

A. Practical Aspects in Modeling Real-Life Distribution 
System 

As seen in Fig. 3, the topology of an actual distribution 
system is complex and has numerous load points. The distri
bution system provides electricity for a CT town and contains 

more than 2000 devices including backbone lines (19 mi.), lat
erallines (65 mi.), transformers (1306), and switchgears (390). 
For most real-life distribution system, the number of devices is 
huge, and therefore reasonable system scale reduction can help 
realize and accelerate the reliability evaluation. 

Quite often, scale reduction is necessary for real-life projects 
because of input data limitation. Therefore, some assumptions 
may be required to conduct system simplification. For example, 
load points in the same backbone segment are assumed to have 
similar reliability performance ifthey are connected to the back
bone directly, which means that they can be considered as one 
load in the reliability evaluation. Similarly, load points in the 
same lateral segment can also be considered as one load. After 
the simplifications, feeder segments are divided by switchgears; 
a single segment only contains one load point and its sub-seg
ments. Therefore, the number ofloads or equivalent load points 
decreases significantly. 

B. Evaluating Reliability for Various Weather Conditions 

In this paper, temporally varying wind storms are simulated 
using the SMC method. During the simulation, the wind storms 
are classified into six categories according to their SSWS. For 
each failure, the corresponding storm classification is recorded. 
Therefore, after the simulation, the effects of each category 
of wind storms can be obtained. The simulation framework is 
shown in Fig. 4 and the procedures are described as follows. 

a) Generate an artificial wind storm through sequential sam
pling based on the occurrence probability model; 

b) Obtain the duration of the wind storm based on the dura
tion model; 

c) Generate SSWS for the wind storm and classify it into a 
proper category based on Table III; 

d) Generate TTF and TTR for components based on the 
weather-dependent component models; 

e) For each component, determine whether its down-state 
period is during the wind storm; if yes, go to step f); if 
no, go to h); 

f) Perform a state assessment process to determine the im
pacts of the wind storm based on the Minimal Path and 
Zone Partitioning Approach (MPZPA) [12]. 

g) According to the classification of the wind storm, update 
the reliability indices for this category of storms; 

h) Go to step e) until all the components have been 
determined; 

i) Go to step a) until the simulation time reaches a given 
maximum simulation time; 

j) Calculate expected reliability indices and index proba
bility distributions for each category of wind storms. 

In particular, the MPZPA in step f) is a technique to accelerate 
state assessment in reliability evaluation of the distribution 
system. In this technique, the concept of "minimal path" in graph 
theory is introduced to indicate the connectivity between a source 
and a load. If any component in the minimal path is taken away, 
the connectivity is lost. Thus by means of the minimal path, 
the connectivity between sources and loads can be determined 
efficiently. Furthermore, in most instances, a fault will exert the 
same influence on the load points between the same two switches 



894 

L349Q 
I 

L348 b41 

b41l - .... --oL347 
b410 

L346 .,.- b409 

b408 L34S 

b407 L344 

L343 
b406 L342 

b40S 
b404 L341 
L340 

b403 
LJJ9 .,.- b402 

L29 

b401 L338 
L337 

b400 

b399 
L336 

b388 

b389 

b395 
L331 

b39 

L33 

L33S 

L274c>-

4.8kV 

b8 

L26 

I 
&IA 

oL265 
I 

~~---<fJ,J"l"""'-~~~~-+b317 

b326 

L285 
L283 L284 

-0 L266 
b318 

267 

. __ -..~..., L251 

L243 

L242 

Fig. 3. One-line diagram of the test feeder. 

L3 

L229 

4.8kV 

b280 

L227 

or in the same sub-feeder, Therefore, these load points and the 
corresponding components can be partitioned into a zone to 

b27 

b272 

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 29, NO.2, MARCH 2014 

obl98 

b 141.....,..,..,:-:-1~ ........ ---<~-9122 

bl97 

bI96 

bl9S 

LI040-- bl2S 

LIO b124 

CjlL165 

~"t'~t-+,-:*bl;;.:2",-,3 _ jt>:!.% 
b201 Ll66 

!4..k123 
bl48 bI49 LI27 

LI64 
0-- b194 

LI26"'_-l~_ 

bl50Ll28 

bl93 

~!.4f.-"'bI90 

LI 9 bl89 

b188 

bl87 

bI86 

bl8S 

bl84 

o-"'b 1:":8"1 ":'b"IS"'O:"'-,. b 179 

b178 

b177 

,....",.",,'+-'+'-<~ ... b 174 

4.8kV 
L147 

r?"o Switch (open) 
CH-<l Switch (closed) 

0 Load 
• Node 

Tie 

j@J ~~ Mid point 

! ~ Sectionalizing 

@] Radial 

Overhead 

UndergJ.'ound 

::::: TransfoOller 

L210 
L209 b254 .,.-

'i'LZ30 L208 
I b253 

b277 
b252 

-oL228 
b249 

b275 

-"'L22S 

b273 4.8kV 
-d.223 

L2I6 

simplify the minimal path and accelerate simulation efficiency. 
The technical details ofMPZPA can be found in [12]. 
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Fig. 4. Framework of the reliability evaluation. 

Fig. 5. Geographic diagram of the test system. 

V. CASE STUDIES 

In this section, models and methods are established based on 
an actual distribution system in the Northeast U.S. The input 
data are briefly introduced, and reliability evaluation results are 
then presented and discussed. 

A. Data Preparation 

The distribution system consists of two feeders, as illustrated 
in Fig. 5. Its one-line diagram is shown in Fig. 3. The system 
supplies 356 load points and 3804 customers. The total load is 
14.35 MW. The reliability parameters are listed in Table VII 
in Section III and Table XI in Appendix C. The parameter a 
of the weather-dependent failure rate model is estimated to be 
4175.6. The repair times under different weather conditions are 
shown in Table VII. The Monte Carlo run will repeat until the 
coefficient of variation of expected energy not supplied (EENS) 
[17] reaches below 0.003. The simulation was conducted on a 
PC with i7-2600 processor, and the CPU time is 5 min. 

There are two critical facilities in the test system (see Fig. 5), 
one is the high school and another is the police station. Under 
extreme weather conditions, they are used as a Shelter and an 
Emergency Center, respectively. Analyses and discusses are fo
cused on the results of these critical facilities and the system. 

TABLE VIII 
EXPECTED RELIABll-ITY INDICES AT THE CRITICAL LOAD PorNTS 

~ 
Sheller Emergency Center 

ndices 
Weather A(occJyr) r(hrlfailure) U(hr/yr) ).(occ./yr) r{hrlfailure) U(hrlyr) 
conditions 

Normal 2.7224 2.16 5.89 3.2299 1.83 5.9 

Major storm 0.0793 9.03 0.72 0.0924 7.76 0.72 

Tropical 
0.0265 369.74 9.81 0,0308 318.74 9.81 

stonn 
Cat. 1 

0.0743 458.65 34.09 0.0862 393.47 33.92 
Hurricane 

Cat. 2 
0.043 554.27 23.81 0.0498 477.04 23.75 

Hurricane 
Cat.3 0.0265 663.77 17.58 0.0306 574.86 17.6 

Hurricane 

TABLE IX 

EXPECTED SYSTEM RELIABll-ITY INDICES 

.s~4JFI (;111. <I)'sf, SAfDJ (Im:\Jlsl . CAIDI (hl''r{lecled 
AS.4J 

EEM~ 
clIsl.yr) clIsl,lyr) cJlst..:vr) (NEWil) 

Normal 3.3525 6.63 1.98 0.999243 94.94 

Majorstonn 0,0869 0.75 8.58 0.999915 10.67 

Tropical 
0.0285 10.03 352.31 0.998855 143,55 

storm 
CaU 0.0798 34.73 435.16 0.996036 496.99 

Hurricane 
C".2 0.0461 24.39 528.54 0.997216 348.76 

Hurricane 
Cat3 0,0282 17.89 634.20 0.997958 256.02 

lltmicane 

B. Expected Reliability Indices 

After the reliability evaluation, we calculate the outage rate 
(A), outage duration (r) and annual outage time (U) for the 
load points; system reliability indices SAIFI, SAIDI, CAID!, 
ASAI, and EENS are also derived [17]. Both expected values 
and probability distributions of these indices can be obtained 
by the SMC simulation and the expected values are listed in 
Tables VIII, IX. Results in the both tables are classified under 
different categories of wind storms. 

As shown in Tables VIII and IX, A and SAIFI under abnormal 
weather are much smaller than that under normal weather, be
cause these two frequency-related indices reflect the occurrence 
frequency of wind storms as well as the outage frequency. 

According to Table VIII, the outage rate and duration of 
the Shelter under major storm are 0.0793 occ./yr and 9.03 
hrlfailure, respectively, whereas those are 2.7224 occ./yr and 
2.16 hr/failure under normal weather. In other words, the 
outage frequency under major storm is less than 3% of that 
under normal weather, but the outage duration under major 
storm is only about 4.5 times of that under normal weather. 
This is why the indices U, SAIDI, ASAI, and EENS (Reflect 
both the frequency and the duration of outages) under major 
storms are even smaller than those under normal weather. 

As listed in Tables VIII and IX, A and SAIFI under trop
ical storms are smaller than those under major storms and Cat. 
1-2 hurricanes, because the damage of tropical storms is not 
as significant as Cat. 1-2 hurricanes and their occurrence fre
quency is less than that of major storms. For Cat. 3 hurricanes, 
though they have severe damage on power system, their occur
rence frequency is very low. Therefore, A and SAIFI under Cat. 
3 hurricanes are less than those of Cat. 1-2 hurricanes. Simi
larly, U, SAIDI, EENS, and ASAI have the worst performance 
under Cat. 1 hurricanes, because Cat. 1 hurricanes have signifi
cant hazards as well as high frequency. 
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It can also be seen from Tables vrn and IX that the indices 
rand CAIDI increase obviously with the increase of the wind 
storm intensity. For instance, l' under Cat. 3 hurricanes is almost 
300 times of that under normal weather. 

As discussed above, it is clear that wind storms (except 
for major storms) have significant impacts on the load point 
and system reliability performances. The expected reliability 
indices vary under different weather conditions and, thus, wind 
storm classification and reliability evaluation for each category 
of storms can describe the impacts more comprehensively. 

C. Probability Distributions of Reliability Indices 

As shown in Figs. 6-11, index distributions of the critical 
facilities and the system are also provided for further analyses 
and discussions. 

1) Critical Facility Index Distributions: As illustrated 
by Figs. 6-8, the effects of wind storms increase with their 
intensity increasing, though their frequencies become low. 
For instance, the distribution extreme value of index A under 
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normal weather is 15 occ.!yr, and that under Cat. 3 hurricanes is 
3 occ.!yr, whereas the distribution extreme values of indices r 
and U increase significantly with the storm severity increasing. 

As can be seen in Fig_ 8, index distributions can reveal rare 
events that have significant impacts on reliability. For instance, 
extreme value of index U under Cat. 3 hurricanes is close to 
4000 hr/yr, but its probability is just millionth. 

2) System Index Distributions: Figs. 9, 10 shows that under 
severe storms, the outages may only happen once but last for a 
long time. For instance, SAIFI under tropical storms and Cat. 
1-3 hurricanes are more likely to be 1 interruptions/system cus
tomer/yr, while the index SAIDI under these storms are likely 
to be more than 400 hr/system customer/yr. Here the outage fre
quencies under severe storms are found to be quite close (Cat. 
1: 0.0798 occ.!yr; Cat. 2: 0.0461 occ.!yr; Cat. 3: 0.0282 occ.!yr). 
These results are consistent with the field reliability statistics by 
NU (Cat. 1: 0.05-0.1 occ.!yr; Cat. 2: 0.025-0.05 occ.!yr; Cat. 
3: 0.014-0.025 occ.!yr), which validates the correctness of our 
simulation algorithm. 
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Due to the specific damage degrees and the specific response 
strategies of the utility, for each category of storms, distribution 
systems usually have a particular restoration time and the 
restoration time under severer weather conditions last longer. 
As can be seen in Fig. 10, SAIDI aggregates around 400 under 
tropical storms, about 500 under Cat. 1-2 hurricanes, and the 
value becomes about 650 under Cat. 3 hurricanes. Similar to 
SAIDI, indices EENS also aggregate around specific values 
and the values increase with the storm intensity increasing (see 
Fig. 11). These results indicate that our method can accurately 
capture the failure bunching effect during disastrous situations. 
By SMC simulation considering wind storm classifications, the 
phenomena above can be revealed and quantified accurately. 

As shown in Fig. 11, EENS of the system under Cat. 1-2 hurri
canes could be more than 5000 MWh and evenreach 10000 MWh 
under Cat. 3, though the probabilities are very low (e.g. the prob
ability of reaching 10000 MWh EENS is 0.0075 under Cat. 3). 
Therefore, system hardening schemes, such as tree-trimming 
schedules, microgrids, undergrounding cables, and distributed 
generators should be designed to improve the system reliability 
performance under extreme weather conditions [23], [24]. The 
quantitative reliability results can be used to evaluate benefits 
and costs under different categories of wind storms for existing 
distribution systems and system hardening options such as un
dergrounding cables, microgrids, and emergency generators. 
Moreover, indirect costs due to weather disasters such as repu
tational and regulatory costs could be significant and should be 
quantified along with other unreliability costs. 

VI. CONCLUSION 

In this paper, wind storm probability models have been built 
based on historical data selected from HURDAT. Then, NUs' 
real-life system outage records have been explored to parame
terize the weather-dependent component models. Further, this 
paper has introduced a distribution evaluation method by com
bining Sequential Monte Carlo simulation with the wind storm 
classification. Finally, the reliability evaluation considering 
wind storms under different levels has been conducted on an 
actual distribution system in the Northeast U.S. 

Below are the main conclusions drawn from the results: 1) 
wind storms have significant effects on distribution system reli
ability and it is indispensable to involve extreme weather in the 
reliability evaluation; 2) reliability evaluation considering wind 
storm classifications provides the change trend of the reliability 
indices and reveals some severe but rare events; 3) the relia
bility evaluation is conducted on a real-life system and it focuses 
on the critical load points. Our risk assessment approach can 
be applied to the development of optimized system hardening 
or reinforcement strategies against extreme weathers. Recently, 
our approach has been adopted by Northeast Utilities in evalu
ating various system hardening options for selective CT towns 
under different weather conditions. Hardening schemes such as 
different types of microgrids, undergrounding cable system and 
emergency generators were evaluated and ranked. The final re
sults have been summarized into a technical report providing 
extensive risk analysis results and suggestions on hardening 
scheme optimization for eight selected towns in CT. 

TABLE X 
WIND STORMS IMPACTED CONNECTICUT DURING 1851-2011 

Storm id S'USlained ,,,,'wiace 
WindsfJeeci(lmo;::; Date Sto}'mid ,Sustained sL~~~ace 

wind s/Jee"(kn()I.\~ Date 

42 49 911411858 738 67.8 9/9/1944 

65 50 912711861 837 57 8/25/1954 

80 40 911611863 848 35 8/7/1955 

121 49 91711869 897 45 7/2811960 

149 40 1 0/2211872 899 57 8/2911960 

222 40 912111882 1004 45 8/2011971 

274 40 8/14/1888 1014 49.2 6/14/1972 

316 49 8/15/1893 1050 60 8/611976 

318 55 811511893 1 137 57 9/1611985 

329 49 1011/1894 1138 30 9/2111985 

347 45 9/20/1897 1157 20 812111988 

377 30 1011 011900 1193 57 8/1611991 

481 35 7/3111915 1216 15 8114/1994 

487 50 511311916 1294 25 9/1412000 

645 45 9/511934 1421 45 8/28/2008 

688 67.8 911 011938 1466 60 8/2112011 

ApPENDIX 

A. Wind Storms Impact Connecticut During I85I-201I 

Based on the criteria presented in Section II, the wind storms 
that affected CT during 1851-2011 are selected from HURDAT 
and listed in Table X. 

B. Parameterization Procedures of the Component Failure 
Rate Model 

In this paper, parameterization procedures as follows are con
ducted on NU's real-life distribution system [10]. 

Component weather-dependent failure rate is assumed as 

A [w(t)] = AlliS [w(t)] + An [w(t)] (9) 

where Aws[W(t)] is the failure rate during the wind storms, 
An[W(t)] is the failure rate under normal weather conditions. 
The two different failure rates are defined as 

Aws [w(t)] = {Awindo[w, (t)], 'if w(t) > Wcrit (10) 
otherwise 

An [w(t)] = {Anormal, 'if w(t) :::; Wcrit (11) 
0, other-wise. 

Then, the expected value of failure rate can be described as 

E {A [w(t)]} = ~t:: E {Awind [w(t)]} + ~::t Ano-,'''' (12) 

where Dws and Tn denote the annual expected durations of the 
wind storms and normal weather conditions, respectively. The 
duration of one year is denoted as Ttot , which is 8760 hours. 

To derive the expected failure rate in (7) the proportion of 
failures occurring during each type of weather condition F ws 
and Fn must be known 

D·w• 
TE {Awind [w(t)]} = Fws E {A [w(t)]} (13) 

tot 
Tn 

-;p-Anorm =FnE {A [w(t)]} (14) 
.L tot 
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where >'n01'"'' Fw .. and Fn are determined based on NU's his
torical statistics. Thus, the value of E {>'·wind[W( t)]} can be cal
culated using (13) and (14). 

Based on (7) and (12) the average value of the failure rate 
during the wind storms is shown as follows: 

[ (
E [w2(t)lw~wc1"it] 

E{>.wind [W(t)]) = l+u w~1'it 

(15) 

where E[w2(t)lw ~ w<:1'it) can be calculated based on Table X 
by defining Wcrit = 40 knots. Therefore, the parameter a is 
obtained, and component weather-dependent failure rate model 
is determined. 

C. Line Parameters o/the Test System 

TABLE XI 
LINE PARAMETERS OF TIIE TEST SYSTEM 

Failure rate(occ.lyr/mile) 
Equipment Under normal Under wind 

weather storms 

Backbone 0.23 Depend on 

Lateral 0.49 equation (8) 
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