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Abstract-Currently, most independent system operators in 
the U.S. run auctions by minimizing the total bid cost ["bid cost 
minimization" (BCM)], and then calculate payments based on 
market clearing prices. Under this setup, the payment cost could 
be significantly higher than the minimized bid cost. Recently, 
an alternative auction mechanism that minimizes the consumer 
payment cost ["payment cost minimization" (PCM)] has been 
discussed. Literature has shown that for the same set of bids, 
PCM leads to reduced consumer payments. However, market 
participants may bid differently under the two auctions, and 
therefore, the payment reduction may not be realized. This ne­
cessitates the study of strategic behaviors of participants. In 
this paper, suppliers' bidding strategies in a day-ahead energy 
market are investigated for both auctions by using a game the­
oretic framework with Nash equilibrium as the solution con­
cept. To simplify the solution process, the originally continuous 
strategies are discretized to form matrix games. Discretization 
may cause the loss of equilibria and the creation of artificial 
solutions. To reduce these side effects, "approximate Nash equi­
libria" are introduced to recover lost equilibria, and additional 
strategy samples are evaluated to eliminate artificially created 
solutions. Games are then solved by examining supplier pay­
offs obtained from running auctions. Characteristics of auctions 
are exploited, leading to improved computational efficiency. Nu­
merical testing results show that the PCM leads to significant 
payment reductions and relatively small increases of production 
costs as compared to BCM. Also, the ''hockey-stick'' bidding is 
more likely to occur under BCM. Finally, long-term impacts of 
PCM are discussed, and whether it would lower costs to con­
sumers in the long run, including capacity payments, remains to 
be investigated. 

Index Terms-Bid cost minimization (BCM), discretization, elec­
tricity auction, hockey-stick bidding, matrix game, Nash equilib­
rium, payment cost minimization (PCM), production efficiency, 
strategic behavior. 
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I. INTRODUCTION 

I N deregulated wholesale electricity markets (e.g., 
day-ahead energy market) in the U.S., independent system 

operators (IS Os) use an auction mechanism to select supply 
and demand bids for energy and ancillary services. A payment 
mechanism is then used to calculate payments for the selected 
bids. Currently, most ISOs adopt a "bid cost minimization" (or 
BCM) auction that minimizes the total bid cost for the planning 
horizon to select bids and their associated levels. Then a "pay 
at clearing price" scheme is used to calculate payments based 
on uniform market clearing prices (MCPs) or locational mar­
ginal prices (LMPs). Under this setup, the payments made by 
consumers could be significantly higher than the minimized bid 
cost obtained from the auction. An alternative auction mech­
anism that minimizes the consumer payment cost ("payment 
cost minimization" or PCM) has been discussed. 

Disparate views were held on these two auction mechanisms. 
On the one hand, BCM leads to maximization of social wel­
fare if supply bids represent production costs, an assumption 
that usually does not hold [1], [2]. On the other hand, some re­
cent studies on PCM show that it leads to reductions in con­
sumer payments as compared to BCM, given the same set of 
bids [3]-[10]. Market participants, however, may not bid the 
same under different auction mechanisms. As a result, the pos­
sible payment reductions identified in these studies may not be 
realized. Moreover, efficiency and long-term impact of PCM 
were barely addressed [5]. All these necessitate the investiga­
tion of strategic bidding behaviors. This, however, is a difficult 
task in view of the interplay among participants through com­
plex auctions. 

This paper investigates electricity suppliers' strategic behav­
iors under BCM and PCM for a day-ahead energy market. The 
demand is assumed fixed without considering its strategic be­
haviors for simplicity. In view that market participants choose 
strategies to maximize their own profits and each one's profit is 
affected by others' strategies, game theory is a natural platform 
for such a study. Literature review on game theoretic studies of 
the two auctions is presented in Section II. Games for the two 
auctions are then formulated in Section III. For simplicity, trans­
mission constraints are not considered, uniform MCPs are used, 
and startup costs are assumed to be fully compensated. Also, 
single-block bids are considered, and a supplier's strategy vari­
ables are bid block prices and bid startup costs for hislher gen­
eration units. These variables are continuous in nature, resulting 

0885-8950/$26.00 © 2010 IEEE 

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on January 26, 2010 at 22:11 from IEEE Xplore. Restrictions apply. 

L ________________________________ ~ __________________________________________________________________________________________ ~ 



182 

in complex continuous games that are difficult to solve. To sim­
plify the solution process, strategy variables are discretized into 
finite numbers of values, leading to matrix games. Considering 
that suppliers are noncooperative, Nash eqUilibrium where no 
supplier can gain by unilateral change of his strategy is used as 
the solution concept, following [12]-[16]. 

To obtain matrix payoffs, the BCM algorithm of [22] and the 
PCM algorithm of [8] are used. The matrix games for the two 
auctions are then solved by checking Nash equilibrium condi­
tions for each tuple of suppliers' strategies in Section IV. Com­
paring to the solutions of original continuous games, discretiza­
tion may cause the loss of equilibria and the creation of artificial 
solutions. To reduce these side effects, "approximate equilibria" 
are introduced to recover lost equilibria, and additional strategy 
samples are evaluated to eliminate artificially created solutions. 
Moreover, characteristics of the two auctions are exploited by 
examining suppliers' reaction points, leading to improved com­
putational efficiency. With examples including an IEEE relia­
bility test system, numerical testing results presented in Sec­
tion V demonstrate the effectiveness of our methods to reduce 
the two side effects of discretization, and that the payment re­
duction effect under PCM over BCM still prevail when strategic 
behaviors of suppliers are considered. Also, the "hockey-stick" 
bidding is found more likely to occur under BCM. The long­
term impacts of PCM are then discussed in Section VI. 

II. LITERATURE REVIEW 

Many game theoretic studies have been conducted for BCM. 
Nash equilibrium is often used as the solution concept since 
participants are noncooperative and each maximizes his own 
profit. In view that bid parameters such as bid prices are 
continuous, many focus on continuous games [11]-[16]. An 
analytical approach is used in [11] to investigate price spikes in 
California's day-ahead energy market based on a two-supplier 
Nash game. Linear bid price curves without startup costs 
are considered, and a supplier's strategy variable is his bid 
quantity. It is concluded that price spikes may be a result 
of gaming behaviors. This analytical approach is limited to 
problems with analytical solutions, a luxury that practical elec­
tricity auctions do not have. In [12]-[14], an approach based 
on mathematical programming is used for auctions without 
unit commitment decisions. Since these auction models are 
continuous and convex, their solutions are characterized by 
Karush-Kuhn-Tucker (KKT) conditions. Auction games are 
then formed where each supplier maximizes his own profit 
with KKT conditions as constraints. This approach requires 
convexity of the auction model and cannot be extended to 
more realistic auctions involving discrete unit commitment 
decisions. In [15] and [16], a coevolutionary method-a type of 
genetic algorithms, is used, allowing a population of potential 
equilibrium solutions to evolve and does not require convexity. 
The convergence, however, could be slow. 

In view of the difficulties for solving continuous games, var­
ious studies focus on matrix games by discretizing continuous 
strategy variables, so that equilibria can be searched among a 
finite number of strategy tuples [17]-[19]. Discretization, how­
ever, may cause side effects, i.e., equilibria obtained from a ma­
trix game may not represent those of the original game. A two-
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supplier game without unit commitment decisions is studied in 
[17], where a supplier's bid cost is proportional to his quadratic 
production cost, with the proportion being the strategy variable. 
These variables are discretized, and mixed strategies of the re­
sulting matrix game are characterized by a set of linear com­
plementarity conditions. It is shown that solutions may not re­
semble those of the original game, and a method for tuning the 
discretization process is introduced to recapture continuous so­
lutions. In [18J, the earlier process is extended to a three-sup­
plier game, and difficulties with more participants are acknowl­
edged because of the complexity of the approach. An auction 
with linear bid curves and without unit commitment decisions 
is considered in [19J, and each supplier's strategy is the ratio 
of his bid price over his incremental production cost. A con­
cept of approximate Nash equilibrium is introduced to capture 
the possibly missing continuous eqUilibria due to discretization, 
and is based on the distance in the strategy space. Approximate 
solutions are obtained by examining all strategy tuples, and it is 
concluded that transmission congestions may enhance the sup­
pliers' ability to exercise market power. 

In spite of the aforementioned results on BCM, very limited 
game theoretic studies can be observed on PCM. Simple two­
supplier and three-supplier matrix games with suppliers bidding 
low or high are analyzed in [20], Nash solutions are compared 
with those of BCM, and it is concluded that there might be a 
tradeoff between consumer payments and production efficiency 
for the two auctions. These results, however, are difficult to ex­
tend to more realistic problems, considering that matrix payoffs 
are obtained from analytically derived auction solutions, an ap­
proach that is impractical for complex auctions with discrete 
unit commitment decisions and more units and hours. 

Our preliminary results on the two auction games with unit 
commitment decisions were presented in [21]. Yet issues such 
as side effects of discretization, characteristics of auctions, and 
production efficiency were not fully addressed. 

III. PROBLEM FORMULATION 

In this section, matrix auction games under BCM and PCM 
are formulated for a day-ahead energy market with given system 
demand. For simplicity, transmission, minimum up/down time, 
and ramp rate constraints are not considered, and uniform MCPs 
are used. Also, single-block bid curves are used and bid startup 
costs are fully compensated, The demand at hour t(l ~ t ~ 24) 
is pD(t). There are I suppliers, Supplier i(l ~ i ~ I) has 
Ki generation units, and for his kth unit (1 ~ k ~ K i ), its 
production cost is characterized by the incremental energy cost 
Cik,O (in dollars per megawatthour) and the startup cost Sik,O 
(in dollars). The single-block bid for this unit is composed of 
the minimum generation pikin (in megawatts), maximum gen­
eration pikax (in megawatts), bid block price Cik (in dollars per 
megawatthour), and bid startup cost Sik (in dollars). Each sup­
plier is considered to maximize his profit by choosing bid block 
prices and bid startup costs for his units. I Let ri denote supplier 
i's strategy for his Ki numberofunits,Le.,ri == {(Cik' Sik)lk = 
1 to K i }, and r-i denote the other suppliers' strategies, Given 

IBased on ISO-New England's historical day-ahead bid data, minimum/max­
imum levels of units are usually fixed, and therefore are not considered as 
strategic variables. 
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Fig. 1. Auction game among suppliers. 

{,ih=l to I from all suppliers, the BCM or PCM determines 
bid selections {Xik(t)}i,k,t ("0" for "not selected" and "1" for 
"selected"), generation levels {Pik (t) h,k,t (in megawatthour) of 
selected bids, and uniform energy clearing prices {MCP(t)h 
for each hour. At hour t, the revenue for the kth unit of sup­
plier i is composed of the energy payment MCP(t) . Pik(t) and 
the startup payment Xik(t)[1 - Xik(t - 1)]Sik. and the pro­
duction cost is the energy cost Cik,OPik(t) plus the startup cost 
Xik(t)[1-Xik(t-1)]Sik,O. The supplier's total profit?ri is there­
fore the total revenue minus the production cost over all hours 
and all his units, i.e., 

K, T 

?ri(Ti, ,-i) = 2.: 2)(MCP(t) - Cik,O)Pik(t) 
k=lt=l 

+(1 - Xik(t - 1»Xik(t)(Sik - Sik,O)}. (1) 

Since each supplier's profit is affected by others' strategies, a 
game is formed among all suppliers with Nash equilibrium as 
the solution concept. 

In the following, games for the two auctions are described in 
Section III-A. To calculate suppliers' profits for a given tuple 
of strategies, the BCM algorithm of [22] is used as summarized 
in Section III-B and the PCM auction algorithm of [8] is used 
as summarized in Section III-C. Differences of the two auction 
algorithms are highlighted by a simple example in Section III-D. 

A. Auction Games and Nash Equilibrium 

With suppliers as players, games are formed under BCM 
and PCM. For each game, a supplier chooses a bid strategy 
to maximize his profit while taking into account the other 
suppliers' strategies. The structure of the games is depicted 
in Fig. 1, where an auction algorithm is used as the core to 
calculate suppliers' profits. Assuming that suppliers are non­
cooperative, Nash equilibrium where no supplier has incentive 
to unilaterally deviate from his strategy is used as the solution 
concept following [12]-[16]. 

Since a bid block price can take any value between 
zero and the price cap ccap specified by the ISO, and a 

2Although ISOs do not announce bid startup caps, suppliers' startup bids are 
restricted by market mitigation rules, and this restriction is assumed to be re­
flected by scap. 
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bid startup cost can be between zero and the maximum 
bid startup scap , 2 strategy variables are continuous in na­
ture. Let ri be the set of continuous strategies of supplier 
i, i.e., r i = {(Cik,Sikh=l, ... ,Kd,O ~ Cik ~ ccap and 
o ~ Sik ~ scap . For a continuous game, a strategy tuple 
{,i h=l to I is a Nash equilibrium if the following "continuous 
equilibrium condition" is satisfied: 

Continuous equilibria are difficult to obtain because the payoff 
function?r in (1) has no explicit formula as it involves the solu­
tion of a complex mixed integer auction, and is nondifferentiable 
by having discrete variables {Xik(t)}i,k,t . 

To simplify the solution process, supplier i's strategy 
variables for his kth unit are appropriately discretized (e.g., 
sampled from the continuous space at a constant interval) 
into a finite number of Nik choices, i.e., {(Cik,n, Sik,n)IO ~ 
Cik,n ~ ccap

, ° ~ Sik,n ~ scap
, n = 1 to Nid . Supplier i 

then has a total number of Ilk=l to K , Nik strategies for his Ki 
units. Let Oi be the set of supplier i's strategy choices with 
IOil = IlkNik. A matrix game can then be formed with a 
total number of IlilOi I = IliIlkNik strategy tuples. Similar to 
(2), bih=l to I (with ,i E Oi) is a Nash equilibrium for the 
matrix game if the following "discrete equilibrium condition" 
is satisfied: 

Concepts of dominance, equivalence, and interchangeability be­
tween two equilibria ,* and ,** can be established. The equi­
librium ,* dominates ,** if all suppliers are no worse off and 
at least one is better off at ,* as compared to ,**, i.e., 

?ri(T*) 2: ?ri(T**) Vi and 

?rj(T*) > ?rj(T**) for some j. 

(4) 

(5) 

1\vo equilibria ,* and ,** are "equivalent" if the payoffs of any 
supplier at these two equilibria are the same, i.e., 

(6) 

Finally, ,* and ,** are "interchangeable" if interchanging any 
supplier i' s two strategies at ,* and ,** also leads to equilibria 
with the same payoffs, i.e., 

( * **) d (** *) I 'I'b' \.J ' 'i , '-i an 'i, '-i are a so eqUl 1 na vZ (7) 

and they all have the same payoff tuples. These concepts will 
be used to analyze multiple equilibria in the solution process 
presented in Section IV. 

As aforementioned, an auction algorithm will be used to cal­
culate suppliers' profits. In the following, formulations and al­
gorithms of BCM and PCM auctions are summarized. 

B. BCM Auction 

The BCM auction mmUillzes the total bid cost, i.e., 
the bid energy cost Cik(t)Pik(t) plus the bid startup cost 
[1 - Xik(t - 1)]Xik(t)Sik over all hours and all units, while 
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satisfying the hourly system demand and individual bid level 
constraints. Mathematically, the auction problem is 

Min{x,p} JB, with JB 
I K; T 

== L L 2) Cik (t)pik (t) 
i=l k=l t=l 

+ (1 - Xik(t -l»xik(t)Sik} (8) 

s.t. L LPik(t) - pD(t) = 0 "It (9) 
k 

pikin 
. Xik(t) ::; Pik(t) ::; pikax 

. Xik(t) Vi V k "It 

Xik(t) = 0 or 1 Vi Vk "It. 

(10) 

(11) 

In view of problem separability, it can be effectively solved by 
using Lagrangian relaxation3 or other mixed integer program­
ming methods. The algorithm in [22] based on Lagrangian re­
laxation is used in this paper. After the aforementioned auction 
problem is solved, an economic dispatch problem considering 
all selected bids at each hour is used to determine the MCP. 
With 'ljJi(t) being the index set of supplier i's selected bids at 
hour t, economic dispatch for hour tis 

I 

M· JED' h JED - '" '" lll{p;d , WIt = L...J L...J 
i=I kE';'; (t) 

s.t. (9)-(10) for hour t. 

(12) 

The MCP is then the Lagrange multiplier A( t) associated with 
the system demand constraint (9) in the earlier economic dis­
patch problem,4 i.e., 

MCP(t) == A(t). (13) 

Note that the aforementioned process where MCPs are deter­
mined as a byproduct of the auction is consistent with the cur­
rent practice of most ISOs (e.g., PJM and ISO-NE). Instead of 
using (13), the MCP for an hour is defined as the maximum price 
of selected bids, following [8], i.e., 

MCP(t) = max {Cik(t)} \It. (14) 
Vi, \IkE';'; (t) 

From the derivations in [8, eq. (23)], it can be shown that (14) 
is equivalent to (13) if no unit is selected at its minimum or 
maximum generation limits.5 

3 A problem is separable and can be decomposed into individual subproblems 
by using Lagrangian relaxation if both the objective function and the constraints 
that couple the subproblems are additive in terms of subproblem variables [26]. 
For BCM, subproblems are formed based on individual bids after system de­
mand constraints are relaxed. Each subproblem is solved by using dynamic pro­
gramming where startup costs are modeled as state-transitipn costs. 

4Since commitment variables are fixed in economic dispatch, startup costs 
are not reflected in MCPs. Consequently, they have to be separately considered 
as shown in (I) . Various alternative pricing schemes have been studied in the 
recent literature; however, they are not considered here. 

50therwise, the two definitions are different, i.e., a unit at its minimum gener­
ation level may set MCP under (14), but not under (13). Nevertheless, the same 
MCP definition (14) is used for BCM and PCM (for the latter, see the following 
section). Thus, in our opinion, the choice of the MCP definition should not alter 
the major conclusions on the comparison of the two auction methods. 
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TABLE I 
DEMAND AND BIDS FOR THE I-H FOUR-BID EXAMPLE 

Bidi 
p,'nm p;rnax Bid Block Price Bid Startup 

(MW) (MW) c,($IMWh) Cost S, ($) 
I 0 45 10 8000 
2 0 45 20 8000 
3 0 12 100 20 
4 0 40 30 2000 

System Demand pJJ = 100 MWh 

C. PCM Auction 

The payment cost is composed of energy payment and startup 
payment, i.e., 

T I K; 

Jp = L L I)MCP(t)Pik(t) 
t=I i=l k=I 

Since MCPs appear explicitly in the objective function, they are 
part of decision variables to be optimized as opposed to being 
byproducts as in BCM. Consequently, the MCP definition (14) 
needs to be operationalized by having the "MCP-bid inequality 
constraints" following [8], i.e., 

Xik(t)(Cik(t) - MCP(t» ::; 0 Vi Vk "It. (16) 

The PCM auction is then to minimize (15) subject to (9)-(11) 
and (16). 

As compared to BCM, the aforementioned problem is more 
difficult to solve in view of its nonseparability caused by the 
cross-product terms between MCP(t) and individual bid vari­
ables in (15) coupled by the discrete nature of MCP in view of 
(16). An effective algorithm based on augmented Lagrangian re­
laxation and surrogate optimization6 has been developed in [8], 
and is adopted in this paper. 

D. Comparison of HCM and PCM Auctions 

Given the same set of bids, the aforementioned two auctions 
could lead to significantly different results as illustrated in [9] 
by using a simple I-h four-bid example with bid parameters and 
demand presented in Table I. It is clear that under both auctions, 
low-price bids 1 and 2 (representing baseload units and were 
"ON" initially) are both selected at their 45 MW capacity. The 
remaining 10 MW (= pD - 45-45) demand gap is either met 
by bid 3 (initially "OFF") with a high bid block price, but a low 
bid startup cost, or bid 4 (initially "OFF") with a low bid block 
price, but a high bid startup cost. It can be seen that BCM selects 
bid 3 since its bid cost for the 10 MW, i.e., 100 x 10 + 20 
[illustrated in Fig. 2(a) by the slashed and dotted area under bid 
3], is lower than bid 4's cost of 30 x 10 + 2000. With bid 3 
selected, the total bid cost is $2370 = 10 x 45 + 20 x 45 + 
100 x 10 + 20. However, MCP is set by bid 3 at $l00/MWh 
to pay all the selected megawatts, thus causing a total payment 
cost of $10 020 = 100 x (45 + 45 + 10) + 20 [represented in 

f1be key idea of surrogate optimization is to approximately optimize the re­
laxed problem with respect to a particular bid one at a time. The analysis of 
its convergence can be observed in [25]. The algorithm has been used to solve 
PCM problems in [8] and [10] . 
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Fig. 2. Illustration of different bid selections under the two auctions. 

Fig. 2(a) by the sum of slashed, dotted, and gray areas], which 
is significantly higher than the total bid cost of $2370. 

In contrast, PCM selects bid 4, leading to a lower MCP of 
$30fMWh and a lower consumer payment of $5000 = 30 x 
(45 + 45 + 10) + 2000. It can be seen that PCM considers the 
impact of selecting a bid on the MCP and the total payment, 
as opposed to BCM that considers the total bid cost only. As a 
result, bids with high block prices, but low startup costs (e.g., bid 
3), are less likely to be selected to fill a small demand gap under 
PCM, since they lead to high MCPs for all the MWs and result 
in high payments. However, these bids are more likely to be 
selected under BCM since their bid costs for a small megawatts 
are low. 

The earlier differences are caused by the different weightings 
of bid prices and startup costs in their objective functions. With 
longer time horizons, the impact of startup costs on commit­
ment decisions tends to be outweighed by bid prices, and the 
solutions to the two auctions are likely to be close. Constraints 
such as ramping and minimum up/down times also tend to have 
similar limiting effects. The reduction of consumer payments 
by PCM, however, could still be substantial by eliminating cer­
tain price spikes via selecting marginal units differently. It will 
be demonstrated in Section V that such effects still prevail (and 
are even reinforced) when strategic behaviors of suppliers are 
considered. 

IV. SOLUTION METHODOLOGY 

In this section, matrix auction games resulting from dis­
cretization of continuous games are solved for BCM and 
PCM. In Section IV-A, possible loss of Nash equilibria and 
possible creation of artificial equilibria through discretization 
are discussed. The concept of approximate Nash equilibrium is 
introduced to capture the possibly missing equilibria, and addi­
tional strategies are randomly examined to eliminate artificial 
Nash solutions. In Section IV-B, the solution process for both 
BCM and PCM games is presented, where suppliers' payoffs 
for each cell of a matrix game are obtained by running an 
auction algorithm. These payoffs are then examined for Nash 
or approximate Nash equilibria. Dominance, equivalence, and 
interchangeability of solutions are discussed. In Section IV -C, 
characteristics of BCM and PCM are explored, thereby leading 
to improved computational efficiency by reducing the number 
of times to run auction algorithms. 
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Player 2's strategy 
A 

y.j .... -+---B 

Player I 's strategy 

- Player I's reaction curve • Player I's reaction point 

- - - Player 2's reaction curve * Player 2's reaction point 

Fig. 3. Illustrative reactions of two-player continuous and discrete games. 

A. Effects of Discretization on Existence of Nash Equilibrium 

For simplicity of analysis, the originally continuous strategy 
variables are discretized into finite numbers of choices, resulting 
in a matrix game whose Nash solutions can be searched among 
a finite number of strategy tuples. The discretization, however, 
may cause loss or artificial creation of equilibria as discussed 
shortly. 

1) Loss of Nash Equilibria: Since only a finite number of 
choices are considered in a matrix game, strategies at a contin­
uous Nash equilibrium are likely to be missed after discretiza­
tion. The matrix game may thus fail to capture continuous Nash 
equilibria, thus leading to the false conclusion of the nonexis­
tence of a solution for the original problem. To illustrate this, 
consider a generic two-player continuous game shown in Fig. 3. 
Player I' s reaction curve is the trajectory of his best reaction to 
player 2's strategies, and is depicted by the solid curve. Player 
2's reaction curve is depicted by the dash curve.? The intersec­
tion of these two reaction curves, i.e., point A, is a Nash equi­
librium since each player is at his best reaction to the other's 
strategy. Now suppose that each player's strategy is discretized 
into four values. Then a reaction point of player 1 represents the 
best strategy among his four choices in reaction to a choice of 
player 2, and these points are depicted by "dots" in the figure. 
Player 2's reaction points are depicted by "stars." An intersec­
tion of these two sets of reaction points would be a Nash equilib­
rium for the discrete game. However, it can be seen that there is 
no such intersection, indicating the absence of Nash equilibrium 
for this discrete game. A continuous Nash equilibrium could 
thus be missed after discretization.s 

To capture a possibly missing Nash solution, the standard dis­
crete equilibrium condition (3) is loosened by c: to yield an "ap­
proximate Nash equilibrium" bni, 1: E ni , i.e., 

Intuitively, no supplier i(l ::; i ::; I) can increase his profit 
by more than c:(> 0) by unilaterally deviating from 1;' This 
approximation parameter c: can be viewed as the amount of 

7These reaction curves do not resemble those of the auction games considered 
in this paper, and are used here for illustration purpose only. 

8The absence of discrete Nash equilibrium could also be caused by the nonex­
istence of continuous equilibria. The differentiation of these two causes is diffi­
cult, except for some small examples that can be fully analyzed. 
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profit that suppliers are willing to forfeit to form an equilib­
rium. This approximation concept is consistent with the stan­
dard Nash equilibrium concept since both are based on "profit," 
and (17) degenerates to the standard equilibrium condition (3) 
if c is zero. Also, an approximate solution under a smaller c is a 
solution under a larger c. Note that this concept is different from 
[19], where approximation is based on "distance" in the strategy 
space. 

2) Artificial Creation of Equilibria: While discretization 
may cause the loss of continuous Nash equilibria, it may also 
create artificial solutions. These solutions satisfy the finite 
number of discrete eqUilibrium conditions (3) or (17), but not 
the infinite number of continuous conditions (2). Therefore, 
they are not true equilibria, but "artificial" ones to the orig­
inally continuous game. For a candidate solution, "artificial 
equilibrium test" is conducted where additional strategies 
are sampled from suppliers' continuous strategy space. If the 
solution satisfies (3) or (17) for these additional samples, then 
it is considered as an equilibrium; otherwise, it is artificial, and 
therefore, eliminated. 

B. Solving Matrix Games 

Consider first the BCM matrix game. Matrix payoffs are sup­
plier profits and obtained by running the auction algorithm of 
[22] for all strategy tuples in the increasing order of bid prices. 
Propositions to improve computational efficiency by reducing 
the number of auction runs will be presented in Section IV-C. 
After all payoffs are obtained, strategy tuples are examined by 
using condition (17) with c = 0 to find Nash equilibria. Tuples 
that satisfy this condition are further examined by using the arti­
ficial equilibrium test, and those passing the test are Nash equi­
libria. If no equilibrium is obtained, then approximate equilibria 
are sought. To find them, the approximation parameter c for each 
strategy tuple {'Yd is first calculated based on (17), i.e., 

To find the approximate equilibria that require the smallest 
c, strategy tuples associated with thes~ c's are sequentially 
examined in the ascending order of c by using artificial equi­
librium tests. The examination terminates when part or all of 
the tuples for an c pass the artificial equilibrium test or when 
c exceeds a predetermined limit Cmax. The earlier procedure 
may lead to zero, unique, or multiple equilibria or approximate 
equilibria. For multiple solutions, dominance, equivalence, 
and interchangeability are then examined. Nondominated, 
nonequivalent, and noninterchangeable solutions may exist, 
and can be analyzed by using the mixed strategy concept. 
However, this is beyond the scope of this paper. The complete 
solution process is depicted in Fig. 4, where the aforementioned 
steps are grouped into two parts: obtaining matrix payoffs on 
the left side and solving equilibria or approximate equilibria on 
the right. 

The aforementioned process for BCM game also applies to 
PCM game with the auction algorithm of [8] replacing that 
of [22] . 
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Fig. 4. Flowchart for solving matrix games. 

C. Reducing the Number of Times for Running Auctions 

Matrix payoffs can be obtained by running an auction algo­
rithm for each strategy tuple. This could be time-consuming 
since an auction itself is a complex optimization problem and 
the number of strategy tuples could be large.9 To improve 
computational efficiency, auction characteristics are explored 
shortly to reduce the number of auction runs. 

For both auctions, it is intuitively clear that if a bid is not 
selected for any hour, then increasing its bid block price or 
bid startup cost while keeping other bids unchanged will not 
change the auction results. Consequently, the auction results for 
a strategy tuple can be used for other tuples with increased bid 
block prices or bid startup costs for nonselected units, thus re­
ducing the number of auction runs. The earlier insight leads 
to the following Proposition I for BCM and Proposition 2 for 
peM. 

Proposition 1: If a bid is not selected at any hour under the 
BCM auction (8)-{1l), then increasing the bid's block price or 
startup cost while keeping other bids unchanged will not change 
the auction solution. 

Proof' Assume that bid m is not selected for any hour, i.e., 
x;" (t) = 0 and p;" (t) = 0 \ft. With the increase of bid m ' s bid 
block price by Llcm (;2: 0) and its bid startup cost by LlSm (2: 0), 

90ur testing experience confirms that the time of computing matrix payoffs 
dominates the time of solving matrix games. 
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it will be demonstrated shortly that the BCM solution remains 
unchanged. To show this, the impact of ~cm and ~Sm on the 
optimal bid cost J'B is analyzed as follows: 

J'B(Cm + ~cm ' Sm + ~Sm) 
= min s.t . (9)-(11) JB(Cm + ~Cm, Sm + ~Sm) 

{x ,p} 

= min s.t. (9)-(11) {JB(Cm, Sm) 
{x ,p} 

+ ~[Pm(t)~Cm + (1 - Xm(t - l»xm(t)~Sml} 
2: {min} s.t. (9)-(11) JB(Cm, Sm) 

x, p 

= J'B(Cm, Sm) (19) 

where the inequality is a result of nonnegativity of the additional 
cost term I;{Pm(t)~Cm + [1-xm(t-1)lxm(t)~Sm}. It can be 
easily seen that, for the original auction solution with x;" (t) = 0 
and p;" (t) = 0 for all t, this additional term is zero, and there­
fore, the inequality in (19) is actually an equality. As a result, 
the minimal bid cost JB(cm + ~Cm, Sm + ~Sm) is obtained at 
the original solution, implying that the original solution is also 
a solution to the auction problem with ~Cm and ~Sm . 

The earlier conclusion for BCM also applies to PCM, as de­
scribed shortly. 

Proposition 2: If a bid is not selected at any hour under PCM 
(9)-(11) and (15)-(16), then increasing the bid's block price or 
startup cost while keeping other bids unchanged will not change 
the auction solution. 

Proof' Following the notation of Proposition 1, it is 
demonstrated that ~cm and ~Sm will not change the PCM 
solution. To show this, first observe that ~cm affects constraint 
(16) by changing it to 

Xm(t)[Cm + ~cm - MCP(t)] :::; 0 Vt. (20) 

Clearly, (20) implies (16). Consequently 

Jp(Cm + ~Cm, Sm + ~Sm) 
= {min} s.t . (9)-(11),(20) Jp(Cm + ~Cm ' Sm + ~Sm) 

x ,p 

2: {min} s.t . (9)-(1l) ,(16)Jp(Cm + ~cm' Sm + ~Sm) 
x,p 

2: {min} s.t. (9)-(1l),(16)Jp(Cm , Sm) 
X, p 

= Jp(Cm, Sm) (21) 

where the first inequality is due to the fact that the feasible re­
gion with (20) is a subset of the region with (16), and the second 
inequality follows the arguments similar to those of Proposi­
tion 1. Furthermore, the original solution with x;" (t) = 0 and 
P~t (t) = 0 Vt is also feasible for the problem with ~cm and 
~Sm' Therefore, the inequalities in (21) are equalities and the 
original solution is an optimal solution for the auction problem 
with ~cm and ~Sm. 
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TABLE II 
DEMAND AND PRODUCTION COST INFORMATION FOR EXAMPLE I 

Supplier pmin pmax Incremental 
Startup Cost 

Energy Cost 
j (MW) (MW) 

Ct o($/MWh) 
S;,o ($) 

I 5 45 50 1500 
2 5 30 90 120 

The previous two propositions are used in the solution process 
shown in Fig. 4 to reduce the number of auction runs, leading 
to an improved computational efficiency.IO 

V. NUMERICAL TESTING RESULTS 

The solution process shown in Fig. 4 for matrix games has 
been implemented in C++ and run on a Pentium-4 2.79-GHz 
PC with 512 MB of memory. In the following, four exam­
ples are presented. Example 1 examines two side effects of 
discretization on the existence of Nash equilibrium (i.e., loss 
of Nash equilibrium and creation of artificial equilibrium) by 
using a simple example, and demonstrates the effectiveness 
of our methods to reduce these side effects. Example 2 with 
two suppliers, three units, and 1 h compares bidding behaviors, 
payment costs, and production efficiencies under the two auc­
tions, and demonstrates the significant reduction of consumer 
payment under PCM at a relatively small cost of production 
efficiency. Example 3 with four suppliers, eight units, and 
24 h demonstrates the effectiveness of the two propositions to 
reduce computational time, and highlights the hockey-stick 
bidding behaviors under BCM. Example 4 then demonstrates 
the robustness of our algorithm based on a modified IEEE 
24-bus reliability test system ignoring transmission by using 
Monte Carlo simulations for randomly selected load profiles 
and production costs. Complete testing data are available at 
http://www .engr. uconn.edu/msll. 

Example 1: Consider a two-supplier I-h BCM example with 
each supplier having one unit. System demand is 40 MW. Pro­
duction cost information of the units is presented in Table II. In 
addition, the energy bid price cap c cap is $200lMWh and the 
bid startup cost cap scap is $3000. The maximum approxima­
tion parameter emax is $200, and both units are "OFF" at hour O. 

In this example, supplier 1 alone can meet the 40 MW de­
mand, while supplier 2 with 30 MW capacity cannot. As a re­
sult, supplier 1 is always selected to provide at least 10 MW and 
compensated for his bid startup cost. Supplier l ' s bid startup 
cost is therefore always considered to be at the maximum s cap , 

and his only decision variable is the bid block price Cl . Supplier 

IOStill, scalability is a concern for large problems. However. since the main 
purpose of this paper is to analyze the differences of BCM and PCM auction 
games as opposed to simulating an actual market, smaller but representative ex­
amples should be sufficient in serving this purpose, Nevertheless. it would be 
interesting to extend our approach to large problems in the future . One way is 
to aggregate similar participants into groups. Yet this may distort the competi­
tive relations among them (consider an extreme case where all participants have 
similar portfolio of units and are aggregated into a single group). Another ap­
proach is to model a tractable number of participants for the game while fixing 
other participants' bids at their true costs. The underlying assumption is that 
only a few participants have gaming power while others can be considered as 
price-takers. The two approaches can also be combined. There will be a tradeoff 
between model granularity and computational efficiency. 
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Fig. 5. Reaction curves and reaction points of Example 1 case 1. 

2 has to compete with supplier 1 for the remaining 30 MW de­
mand. Correspondingly, whether supplier 2 can win the 30 MW 
or not is solely dependent on his bid cost for the 30 MW. Sup­
plier 2's decision can therefore be represented by his average 
bid cost C2 at P2 max (= 30 MW), i.e., C2 == C2 + S2/P2max ' In 
the following, loss of Nash equilibrium (case 1) and creation of 
artificial equilibrium (case 2) caused by discretization are illus­
trated. For each case, the continuous game is first analyzed based 
on suppliers' reaction curves, the matrix game is then solved to 
show the side effect of discretization, and finally, the method 
presented in Section IV -A is applied to reduce the side effect. 

Case 1) Loss of Nash equilibrium: For the continuous game, 
let CI E [0, ceap] and C2 E [0, ccap + seap /P2 max]. As men­
tioned in Section IV -A, a Nash equilibrium for the continuous 
game is an intersection of suppliers' reaction curves, which are 
derived shortly. 

Supplier l' s reaction curve: To obtain supplier l' s reaction 
curve TI, observe that supplier 1 must provide at least 10 MW, 
and the remaining 30 MW (= 40 -10) goes to the supplier with 
a lower bid cost. Thus, supplier 1 has two options of reaction to a 
given C2. one is to bid high (i.e., CI x 30 > C2 X 30 or CI > (2) to 
only provide the guaranteed 10 MW and set MCP at the energy 
bid price cap, i.e., CI = ccap , with a profit of (ccap - CI,O) x 10 
(excluding the secured profit obtained from scap). The second 
is to bid low to win the remaining 30 MW (i.e., CI < (2) while 
setting MCP as high as possible to maximize his profit, i.e., 
CI = C2 - 8 (8 is a small positive number) with a profit of 
(C2 - 8 - CI,O) x 40. By comparing the profits under these 
two options, it can be concluded that if supplier 2 bids low, i.e., 
(C2 - 8 - CI,O) x 40 < (ccap - CI,O) X 10), or C2 < (ccaP + 
3CI,O)/4 + 8 (=87.51 with 8 = 0.01), then supplier 1 would not 
compete for the remaining 30 MW, but rather set high MCP with 
CI = ccap . This part of reaction curve TI is depicted in Fig. 5 
by the line segment between A (ccap ,0) and B(ccap , 87.51) for 
C2 < 87.51. Otherwise, supplier 1 would choose to win the 
remaining 30 MW by bidding CI = C2 - 8 as depicted by the 
line segment between C (87.5,87.51) and D(ccap - 8, ceap) for 
C2 2: 87.51. 

Supplier 2' s reaction curve: Similar to the aforementioned 
analysis, supplier 2 has two options for his reaction to a given 
CI: one is to bid any value above CI (i.e., C2 > CI), and in this 
case, supplier 2 will not be selected with zero profit. The second 
option is to bid low to win the 30 MW (i.e., C2 < cd, but as 
high as possible to maximize his profit, i.e., C2 = CI - 6 with 
a profit of (CI - (j - C2,0) x 30 + S2 - S2,0' By comparing 
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Fig. 6. Reaction curves and reaction points of Example I case 2. 

these two options, it can be concluded that if supplier 1 bids 
low (i.e., (CI - 8 - C2,0) x 30 + S2 - S2,0 < 0, or cI < 
90.02 + 6), then supplier 2 would not compete for the 30 MW. 
This part of reaction curve T2 is, in fact, a region-the shaded 
region above and including the line segment between E (0, 0.01) 
andF (90.03, 90.04) forcl < 90.02+6 (=90.03 with 6 = 0.01) 
shown in Fig. 5. Otherwise, supplier 2 would bid C2 = CI - 8 
to win the 30 MW, as depicted by the line segment between G 
(90.03, 90.02) and H( ccap , ccap - 8) for CI 2: 90.03. It can 
be seen that the two reaction curves share the line segment CF. 
Thus, any point on CF is a Nash eqUilibrium where supplier 
1 provides the entire demand and sets MCP. Point F with the 
highest CI (or the highest MCP) dominates other equilibria, and 
is taken as the solution . . 

For the matrix game, let supplier l's strategy CI E [0, ceap] 
be discretized at 0.9, 1.0, 1.1, 1.5, 1.7, and 1.9 times of his in­
cremental energy cost CI,O, plus an additional strategy at ceap . 
Also, let supplier 2's C2 E [0, ccap + scap /P2max] be dis­
cretized at the same discretization factors of his average produc­
tion cost C2,0( = C2,0 + S2 ,0/P2 max), plus an additional strategy 
at (ccap + seap /P2 max). As mentioned in Section IV-A, a Nash 
equilibrium for the discrete game is an intersection of supplier 1 ' 
reaction points (depicting his best discrete choices in response to 
supplier 2's choices) and supplier 2's reaction points. In Fig. 5, 
supplier l's reaction points are depicted by circles and supplier 
2's reaction points are depicted by stars. It can be seen that there 
is·no intersection between these two sets of points, implying that 
the earlier continuous equilibrium at point F has been lost. To 
capture this missing equilibrium, the approximate equilibrium 
concept presented in Section IV-A is used, and testing result 
shows that with e = 100, a unique approximate equilibrium is 
obtainedat(cl"~) = (1.7cI,0,C2,0) = (85,90.4). 

Case 2) Creation of artificial equilibria: To illustrate the cre­
ation of artificial equilibria via discretization, the parameters of 
case 1 are modified as follows. Supplier 2' s C2 ,0 is changed from 
90 to 80, and the discretization factors are changed to 0.9, 1.0, 
1.1, and 1.7 plus cap. With analysis similar to case 1, the reaction 
curves for the continuous game and reaction points for the dis­
crete game are obtained as shown in Fig. 6. Since there is no in­
tersection between the two reaction curves, there is no Nash equi­
librium for the continuous game. However, an artificially created 
equilibrium exists withe = Oat(c~,c~) = (ccap ,142.8) as 
the intersection of the two sets of reaction points for the matrix 
game. This is caused by the loosened equilibrium condition (3) 
that examines only five strategies for each supplier, as compared 
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TABLE III 
PRODUCfION COST INFORMATION FOR EXAMPLE 2 

Supplier Unit P""" pmax Incremental Energy Startup Cost 
i k (MW) (MW) Cost C'k,O ($/MWh) S'k 0 ($) 

1 
1 0 30 32 0 
2 2 15 100 10 

2 1 3 45 40 800 

TABLE IV 
SUPPLIER STRATEGIES FOR EXAMPLE 2 

Supplier Unit Low ("L") Middle ("M") High ("H") 
i k (d-,8-) (eM, ffi) (JI, S1) 

1 
1 (32,0) (48,0) (64, 0) 
2 (100, 10) (150, 15) (200,20) 

2 1 (40, 800) (60, 1200) (80, 1600) 

to the continuous equilibrium condition (2) that examines the en­
tire continuous domain. To prevent this artificially created solu­
tion, additional strategies sampled uniformly from [0, ccapj for 
supplier 1 are used to further examine condition (3). It is found 
that given supplier 2's strategy C2 = 142.8, supplier 1 would de­
viate from ct = ccap (with a profit $1500) for a sampled strategy 
C1 :=;; 120 (with a profit of $2800). As a result, (c1, ~) does not 
satisfy (3) under c max = 200( < 2800-1500), and therefore is 
an artificial solution and eliminated. 

Example 2: Consider a two-supplier 1-h example with sup­
plier 1 having two units and supplier 2 having one unit. Produc­
tion cost information for the three units is presented in Table III. 
For a continuous game, each unit's bid block price Cik is as­
sumed to be in between 1.0 and 2.0 times of the corresponding 
incremental energy cost (i.e. , Cik ,O E [Cik,O , 2Cik,Oj), and the bid 
startup cost Sik is assumed to be within the range [Sik,O , 2Sik,Oj. 
For a matrix game, three discrete choices are considered for each 
unit, i.e., (cL, SL), (cM, SM), and (cH, SH), respectively, rep­
resenting 1, 1.5, and 2 times of (Cik,O, Sik,O), as presented in 
Table IV. Supplier I thus has nine (3 x 3) choices, and supplier 
2 has three. The maximum approximation parameter Cmax is 
$200, and all units are "OFF" at hour O. 

Matrix games under the two auctions are solved. For each 
auction, three demand levels are considered: 25 MW repre­
senting low demand, where supplier l' s unit 1 (U11 ) or supplier 
2's unit 1 (U21) alone is able to meet the demand; 33 MW 
representing medium demand, where U21 is able to meet the 
demand; and 70 MW representing high demand, where no unit 
alone is able to meet the demand. 

Bid cost minimization: 
Case 1) pD = 25 MW' Nash equilibria (with C = 0) are ob­

tained at (HX, X), as presented in Table V with "X" representing 
"Do not care" (could be "L," "M," or "H"). It can be examined 
that these equilibria are equivalent and interchangeable by using 
the concepts discussed in Section III-A. At the equilibria, sup­
plier 1 bids "H" on U11 because the unit has a bid cost of $1600 
(= 64 X pD + 0), lower than "L" of the competing U21 (with a 
bid cost of $1800 = 40 x pD + 800) for the demand pD. The 
unit U 11 therefore takes the market, while U 12 and U 21 are not 
selected. 

Case 2) pD = 33 MW- Equivalent and interchangeable Nash 
equilibria are obtained at (LIM-H, X) with c = O. To interpret 

Bid Cost 
Min. 

TABLE V 
RESULTS OF EXAMPLE 2 

pD 25MW 33MW 

& 0 0 
Equilibrium (HX, X) (LIM-H, X) 

MCP($/MWh) 64 200 
Selected MWs 25-0-0 30-3-0 

& 0 106 

70MW 

0 

(xx, H) 
80 

30-0-40 
0 

Payment Equilibrium (HX, X) (LIM-X, M) (XX, H) 
Cost Min. MCP($/MWh) 64 60 80 

Selected MWs 25-0-0 30-0-3 30-0-40 
"X" could be "L," "M," or "H" 

TABLE VI 
COSTS WITH pD = 33 MW FOR EXAMPLE 2 

Bid Cost Min. Payment Cost Min. 
Total Payment ($) 6620 3180 
Total Bid Cost ($) 1580 2820 

Total Prod. Cost ($) 1210 1820 
Total Supplier Profit ($) 5410 1360 
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this result, it can be verified that supplier 1 guarantees the selec­
tion of his U11 at its capacity 30 MW by bidding "L" or "M." 
To satisfy the remaining small gap of 3 MW, supplier I' s "H" 
on U12 (with high bid block price, but low startup cost) will win 
over supplier 2's "L" on U21 (with low bid block price and high 
startup cost) as a result of the characteristics of BCM discussed 
in Section III-D. Therefore, supplier 1 bids "H" on U12 and takes 
the remaining 3 MW regardless of supplier 2's bid. 

Case 3) pD :=;; 70 MW: Equivalent and interchangeable Nash 
equilibria are obtained at (XX, H) with c = O. Supplier 2 must 
be selected to satisfy the high demand, and therefore bids "H" 
on U21 to set a high MCP. For supplier 1, his U11 must also be 
selected, but does not set MCP since any strategy for this unit 
has a block price lower than that of "H" on U21 . Also, supplier 
l's U12 will not be selected since any bid on U12 has a block 
price higher than the bids on U11 and U21 . Therefore, supplier 
1 bids "X" on his two units. 

Payment cost minimization: 
Case 1) pD = 25 MW' The competition is between U11 and 

U21, and the winner has the entire market and his bid price sets 
MCP. It turns out that the Nash solutions are obtained at (HX, 
X), same as those for BCM. 

Case 2) pD = 33 MW' Approximate Nash equilibria are ob­
tained at (LIM-X, M) with c = 106, indicating that being willing 
to comprise $106, no supplier has an incentive to deviate from 
his strategy. These approximate solutions are equivalent and in­
terchangeable. It can be verified that supplier 1 guarantees the 
selection of his U11 at its capacity 30 MW by bidding "L" or 
"M." For the remaining 3 MW, supply 2's "M" on U21 guar­
antees its selection against supplier l's any bid "X" on U12 . 

This is because even "L" on U12 will have a high block price 
that would set a high MCP for the entire demand, as discussed 
in Section III-D. Observe that the equilibria are different from 
those of BCM. To further compare the two auctions, costs at the 
two equilibria are presented in Table VI. It can be seen that com­
pared with BCM, PCM yields a lower MCP. Also, payment 
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TABLE VII 
PRODUCTION COST PARAMETERS IN EXAMPLE 3 

Supplier Unit P mID ik Pi,max Inc. Energy Cost Startup Cost 
i k (MW) (MW) Cik,O ($IMWh) SIk,O ($/Start) 
1 1 12 125 15 3000 

2 5 25 45 1600 
3 2 8 82 50 

2 1 15 147 20 2500 
2 6 30 42 1800 
3 2 10 85 25 

3 1 3 10 75 100 
4 2 2 5 92 20 

cost reduction $3440 (=6620 - 3180) is achieved at a relatively 
small increase $610 (= 1820 - 1210) of production cost. 

Case 3) pD = 70 MW' Following an analysis similar to the 
aforementioned, it can be shown that the Nash solutions are the 
same as those for BCM. 

Finally, it can be seen from Table V that suppliers generally 
do not bid at their production costs (represented by "L" in this 
example) under either of the two auctions, implying that none of 
the two mechanisms leads to the truthful revelation of suppliers' 
production costs. 

Example 3: Consider a four-supplier eight-unit 24-h ex­
ample. Production cost information of the units is presented 
in Table VII, with suppliers 1 and 2 each having three units, 
and suppliers 3 and 4 each having one unit. Supplier l' s unit 1 
(Ull ) and supplier 2's unit 1 (U21 ) are baseload units with low 
incremental energy costs, but high startup costs; U13 , U23 , U31 , 

and U41 are small peaking units with high incremental energy 
costs, but low startup costs; and U12 and U22 are cycling units 
with incremental energy costs and startup costs in between 
those of baseload and peaking units. For a continuous game, 
each unit's bid block price Cik is assumed to be in between 
1.0 and 2.0 times of the corresponding incremental energy 
cost (i.e., Cik E [Cik,0,2Cik,O]), and the bid startup cost Sik is 
assumed to be within the range of [Sik,O, 2Sik,oj. For a matrix 
game, three discrete choices are considered for each unit, i.e., 
"L," "M," and "H," respectively, representing 1, 1.5, and 2 times 
of (Cik,O, Sik,O). Thus, suppliers 1 and 2 each has 27 [3 x 3 x 3] 
strategies, and suppliers 3 and 4 each has 3 strategies. The 
hourly system demand presented in Table VIII is based on 
the load curve of [23] with a rescaled peak load of 324 MW 
(representing 90% of the total generation capacity 360 MW). 
The maximum approximation parameter Cmax is $1000, and all 
units except the baseload ones are assumed "OFF" at hour O. 

Solutions for the two auction games are summarized in 
Table IX. Consider BCM first. The approximate solution is 
obtained at (L-H-H, H-H-H, L-L) with C = 158. Supplier 1 
bids "L" on his baseload Ull to have it fully selected for all 
hours while bidding "H" on his two other units to induce high 
MCPs. Supplier l' s "L-H-H" (i.e., with bid block prices of 
$15, $90, and $l64IMWh) on his three units exemplifies the 
"hockey-stick" bidding behavior that has been observed in 
current BCM auctions. Supplier 2 bids in a similar manner for 
his three units except for "H" on his baseload U21 to set high 
MCPs during off-peak hours 1-8. Unlike suppliers 1 and 2's 
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TABLE VIII 
24-H SYSTEM DEMAND FOR EXAMPLE 3 

Hour PU(MW) Hour PU(MW) Hour Y(MW) 
1 207.36 9 281.9 17 311.0 
2 194.4 10 307.8 18 311.0 
3 187.9 11 320.8 19 301.3 
4 181.44 12 324.0 20 298.1 
5 181.44 13 320.8 21 298.1 
6 187.9 14 324.0 22 301.3 
7 207.4 15 324.0 23 281.9 
8 246.2 16 314.3 24 233.3 

TABLE IX 
EQUILIBRIUM SOLUTIONS OF TwO AUCTIONS FOR EXAMPLE 3 

Supplier i Unitk 
Bid Cost Min. Payment Cost Min. 
with c= 158 with c= 775 

I 1 L L 
2 H H 
3 H L 

2 I H H 
2 H H 
3 H M 

3 1 L L 
4 2 L M 

-BCM ----rCM 
200 

1::1 ):::~ ... o .. I 
~ 5~ f ..... ,. · ... =--. , . ._ _ ..,.~ 

3 5 7 9 11 13 15 17 19 21 23 

Hour 

Fig. 7. Hourly MCPs under the two auctions for Example 3. 

"H" on their peaking units, suppliers 3 and 4 bid "L" on their 
only peaking units since hockey-stick bidding cannot be applied 
to a supplier with a single unit. It can be seen that suppliers may 
not bid at their production costs, which are represented "L" in 
this example. 

Now, consider PCM solution obtained at C = 775 in Table IX. 
It can be seen that suppliers generally bid lower than the case 
under BCM. In particular, supplier 1 bids "L" on his peaking 
unit U13 , indicating no hockey-stick bidding for this supplier. 
This is because high-price bids on peaking units would have 
little chance to be selected under PCM in view of their major 
effects on lifting MCPs and payment cost. It can also be seen 
that suppliers may not bid at their production costs. To further 
illustrate the differences between the two auctions, 24 hourly 
MCPs are depicted in Fig. 7. It can be seen that for peak hours, 
MCPs under PCM are much lower than those under BCM, con­
sistent with the discussion in Section III. 
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TABLE X 
COMPARISON OF COSTS AND TIMES FOR EXAMPLE 3 

Bid Cost Min. lPayment Cost Min. 
otal Consumer Payment $ 591 ,537 $ 485,563 
otal Supplier Profit $ 456,282 $ 346,683 
otal Prod. Cost $ 135,255 $ 138,880 

(L-PU Time with Prop. 1&2 22 min 53 min 
~PU Time wlo Prop. 1&2 27 min 74 min 

TABLE XI 
PRODUCTION COST INFORMATION FOR EXAMPLE 4 

Suppl. 
Unit N.of 

Type 
P""" pn"'X Heat-rate Startup He 

Group Units MW MW (Btulkwh) at (Mbtu) 

I 4 Coal 10 76 13311 596 
I 

2 3 #6 Oil IS 100 8089 250 

3 4 #2 Oil 4 20 9859 5 

2 I 4 Coal 20 ISS 9381 260 
2 5 #60il 3 12 10178 38 

3 I 2 Nuclear 40 400 9438 40000 
2 6 Hydro 0 50 • 0 

4 I I Coal 35 350 9768 1915 
2 3 #6 Oil 20 197 8348 443 

• Heat-rate not applicable for hydro units. In this example, the 
incremental energy cost for these units is fixed at $15IMWh. 

The costs and CPU times under the two auctions are presented 
in Table X. Observe that the total consumer payment under PCM 
is $105 974 lower than that ofBCM, representing 17.9% reduc­
tion in payment. This is a direct result of smaller MCPs under 
PCM during peak hours, as shown in Fig. 7. Also, observe that 
the production cost under PCM is slightly increased by $3625 
(as compared to the payment reduction), indicating a relatively 
small loss of production efficiency. The total profit of suppliers 
is reduced by $109 599. This may lead to the concern of sup­
pliers' ability to recover their capital costs . This issue could be 
addressed in a broader context by considering capacity markets, 
long-term contracts, etc. More will be discussed in Section VI. 
The CPU time for the PCM game is larger than that for the 
BCM game as expected. 11 Also, note that E"max( = 1000) is rel­
atively small as compared to the costs and profits under the two 
auctions, implying an appropriate choice of E"max . To test the 
effectiveness of two propositions in Section IV -C, CPU times 
without implementing these propositions are also presented in 
the table. It can be seen that by implementing the propositions, 
the CPU times are reduced by 17% for BCM and 15% for PCM, 
demonstrating the effectiveness of the two propositions. 12 

Example 4: Consider a four-supplier, 32-unit, 24-h example 
based on the IEEE reliability test system [23] with transmission 
ignored. Each supplier has various groups of identical units with 
known heat rates (Btu/kWh) and startup heat inputs (MBtu), as 
presented in Table XI. For baseload units (coal or nuclear), a 

llPor the algorithm depicted in Pig. 4, the time for solving auction problems 
dominates the time for solving matrix games with payoff tuples given. Also, a 
PCM auction is usually more time-consuming to solve than a BCM auction in 
view of its inherent problem complexity (see [8] and [10] for details) . Therefore. 
the overcall CPU time for the PCM game is longer than that of the BCM game. 

12The number of strategy tuples determines the overall CPU time. Since this 
number is combinatorial. the CPU time increases exponentially with respect to 
the number of participants and discretization levels even with the implementa­
tion of the two propositions. Nevertheless, the examples presented in this section 
might be sufficient to illustrate our ideas. 

TABLE XII 
MEAN AND STANDARD DEVIATION OF FuEL PRICES FOR EXAMPLE 4 

Puel Type Mean Price ($lMbtu) Stdev ($lMbtu) 

Coal 1.78 0.2 

#2 Oil 10.0 2.0 
#6 Oil 8.5 1.5 

Nuclear 1.5 0 

1---BCM - PCM ~ Load 1 
~ 200 3000 ~ 

g :::1::::::::::::~::::] 
~ O~ I I 1------10 

I 3 5 7 9 II 13 15 17 1921 23 
Hour 

Pig. 8. Hourly MCPs under the two auctions for Example 4 case I). 

TABLE XIII 
SIMULATION RESULTS FOR EXAMPLE 4 

Bid Cost Min. Payment Cost Min. 
Case Consumer CPU Time Consumer CPU Time 
ID Payment ($) (s) Payment ($) (s) 

I 4,896,344 535 4,320,833 1183 
2 6,421,916 609 5,550,077 1406 
3 1,007,678 595 828,837 1283 
4 4,109,803 555 3,789,011 1212 
5 909,762 541 668,940 1958 
6 4,154,383 592 3,842,511 1241 
7 2,635,261 577 2,179,108 1259 
8 3,714,846 633 2,889,906 1249 

9 3,223,347 638 2,655,805 1252 
10 3,390,256 652 2,830,586 1255 
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supplier's strategy choices on the pair of bid block price c and 
bid startup cost 8 are 1.0 and 1.2 times of the corresponding pro­
duction cost, i.e., (c, 8) = (co , 80 ) or (1.2CO, 1.280 ) . For other 
units, a widerrange of 0.8, 1.2, and 1.5 times are used since these 
units are likely to set the clearing prices. For simplicity, a sup­
plier is assumed to apply the same strategy to all identical units 
in the same group, and all units except the baseload ones are 
"OPP" at hour O. The approximation parameter E"max is $3000. 
Ten cases were tested. For each case, the 24-h system demand 
is taken from a load profile of a day arbitrarily selected from the 
load year defined in [23], and unit production costs are randomly 
generated based on the fixed heat rates and startup heat inputs 
presented in Table XI and the Gaussian random fuel prices pre-
sented in Table XII. . 

The consumer payments under the two auctions for the ten 
cases are presented in Table XIII.!3 It can be seen that, for each 
case, the consumer payment for PCM is less than that for BCM. 
The average payment reduction for the ten cases is $490 798 
(15.8% of the average payment cost under BCM), indicating 
significant cost savings for consumers. As a result, significant 
payment reductions achieved for a given set of bids, as reported 
in previous papers [3]-[10], still prevail within the game con­
text. This is probably a result of not selecting small peaking 

I3Note that cm.x( = 3000) ·is relatively small as compared to the costs in the 
table. implying an appropriate choice of its value. 
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TABLE XIV 
CPU TIMES FOR EXAMPLE 4 

CPU Time Bid Cost Min. Payment Cost Min. 
Mean (sec.) 593 1330 
Stdev (sec.) 41s 228.3 

units with very high bid block prices as marginal units under 
PCM. To illustrate this, hourly MCPs for case 1 are depicted in 
Fig. 8. It can be seen that during hours 18-22 with high demand, 
MCPs under BCM are much higher than those under PCM, im­
plying that bids with high block prices are selected to set MCP. 
Means and standard deviations of CPU times for the two auc­
tions are presented in Table XIV. The mean time for PCM is 
larger than that for BCM as expected. Also, the standard devi­
ations of CPU times are not large, indicating the robustness of 
the solution process of Fig. 4. 

VI. LONG-TERM IMPACTS OF PCM 

While the aforementioned sections focused on short-term 
market behaviors, long-term effects of auction mechanisms 
could not be ignored. While a full study of such issues require 
another paper, in this section, we shall share some of our ideas. 

1) Generation cost recovery: Generators have two major 
types of costs: capital investment and operational costs. 
While the operational cost recovery can be addressed by 
short-term markets through make-whole payment,I4 cap­
ital cost recovery can be partially resolved by introducing 
additional long-term markets, e.g., forward capacity mar­
kets such as those in PlM and ISO-NE. If generators 
receive less profit from PCM as compared to BCM, then 
long-term markets might need to be appropriately de­
signed for a fair return on the capital investment. It is 
possible that PCM may lead to an increase in long-term 
capacity payments while reducing short-term payments. 
If in the long run, generators must cover all their costs 
to enter and remain in the market, it is possible that total 
long-run costs to consumers will not differ between PCM 
and BCM. Further investigation is needed. 

2) Plant construction and fuel consumption: As illustrated 
by the small I-h example in Section III, PCM tends to 
favor a low-price high-startup-cost unit over a high-price 
low-startup-cost unit in meeting a small incremental de­
mand. Consequently, it is possible that under PCM, fewer 
high-price peaking units will be built and the consumption 
of corresponding types of fuel will be reduced. However, 
these effects might be limited in practical situations with 
longer commitment periods and with the consideration of 
ramp rate and minimum up/down time constraints. The rea­
sons are as follows. The differences in BCM and PCM arise 
from the different weightings of a unit's startup cost and 
bid price, as illustrated in Fig. 2. With longer commitment 

14Make-whole payment is the compensation paid to generators to cover their 
bid costs during a commitment period (e.g., 24 h). It is adopted by many ISO 
markets, and is also known as uplift payment. 
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periods, the impact of startup costs on commitment deci­
sions tends to be outweighed by bid prices, and PCM so­
lutions may be closer to BCM solutions. Also, constraints 
such as ramping and minimum up/down times tend to have 
similar limiting effects. As a result, for a practical model, 
PCM solutions might not drastically deviate from BCM so­
lutions, except for the deselecting of a few small high-price 
bids to reduce consumer payment costs. Therefore, it is 
possible that the long-term impact of PCM on plant con­
struction plans and fuel mixes would be limited. The re­
duction of consumer payments, nevertheless, could still be 
substantial by eliminating certain price spikes via different 
selections of marginal units, as illustrated in Figs. 7 and 8. 
These need to be verified by studying long-term models in­
cluding repeated day-ahead markets and capital investment 
models. 

3) Efficiency and investment signal: While PCM tends to be 
less efficient than BCM, the difference might be limited 
under a practical auction model, as discussed before. If this 
is the case, then the impacts of efficiency loss and invest­
ment signals would be limited. These will need to be veri­
fied by studying long-term models. 

4) Efficient consumption of electricity: To study this issue, 
price-sensitive demand bids have to be considered. These 
demand bids can be viewed as supply bids with negative 
prices and negative quantities, but without startup costs. As 
illustrated by the small I-h example in Section III, startup 
costs are the main source of difference between BCM and 
PCM. In view that demand bids do not have startup costs, 
their presence might be expected not to have a major impact 
on the results. Consequently, the conclusion of this paper 
may still be valid with the consideration of demand bids, 
i.e., PCM may still tend to reduce the consumer payment 
with a relatively small loss of efficiency. Further investiga­
tion would be needed to confirm whether this is the case. 

VII. CONCLUSION 

Two electricity auction mechanisms are discussed: BCM and 
PCM. Literature has shown that, for the same set of bids, PCM 
leads to the reduction of consumer payment as compared to 
BCM. This result, however, may not hold as suppliers could 
bid differently under the two auctions. This paper investigates 
suppliers' strategic behaviors in a simplified day-ahead energy 
market under the two auctions. Matrix Nash games are formed 
by discretizing the originally continuous strategy variables to 
simplify the solution process. The side effects of discretization 
and the methods to reduce them are presented. It is found that 
with strategic bidding, PCM leads to significant reductions in 
consumer payment at a relatively small loss of production ef­
ficiency. This is probably because the key differentiating fea­
ture of the two auctions, as previously reported, still prevails 
in the game context, i.e., bids with high bid block prices and 
low startup costs are less likely to be selected under PCM than 
the case under BCM. Moreover, the "hockey-stick" bidding be­
havior is found more likely to occur under BCM. Possible long­
term impacts of PCM are also discussed. Whether PCM would 
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lower costs to consumers in the long run, however, needs to be 
further investigated because capacity payments might have to 
be increased with the reduction in energy payments. 
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