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Abstract-In current electricity markets of the USA, locational 
marginal prices (LMPs) are obtained from the economic dispatch 
process and cannot capture costs associated with commitment de
cisions. The extended LMPs (ELMPs) were established as the op
timal Lagrangian multiplier of the dual of the unit commitment 
and economic dispatch problem. Commitment related costs are in
cluded and uplift payments are minimized. To obtain ELMPs, the 
dual problem should be solved with multiplier optimality and com
putational efficiency. Subgradient methods suffer from the multi
plier zigzagging difficulty. Cutting plane methods encounter com
putational complexity issues in calculating query points. In this 
paper, a subgradient simplex cutting plane method is developed to 
obtain ELMPs. Transmission is not considered for simplicity, while 
key features of ELMPs are still captured. By innovatively using 
subgradients and simplex tableaus, query points are efficiently ob
tained through an adaptive three-level scheme. A query point along 
the subgradient is easily calculated at Level 1. As needed, Level 2 
obtains Kelley's query point and Level 3 obtains the Chebyshev 
center, bot!i by pivoting simplex tableaus. Numerical results show 
that the optimal multiplier is efficiently obtained. 

Index Terms-Cutting plane methods, electricity markets, 
extended locational marginal prices (ELMPs), Lagrangian relax
ation. 

I. INTRODUCTION 

I N the current wholesale electricity markets of the USA, the 
auction mechanism selects generation offers and their cor

responding levels to minimize the total bid cost. The conges
tion-dependent locational marginal prices (LMPs) are then de
termined in the economic dispatch' process with fixed unit com
mitment decisions. Start-up and no-load costs associated with 
unit commitment decisions cannot be included in LMPs, re
sulting in significant uplift payments [I]. To improve price sig
nals, extended LMPs (ELMPs) were developed in [2] as the op
timal Lagrangian multiplier of the dual of the unit commitment 
and economic dispatch (UCED) problem. The corresponding 
optimal dual values as a function of demand form the convex 
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hull of the total cost function. Commitment related costs are 
included in ELMPs, and uplift payments are minimized. Eco
nomic significance ofELMPs as compared with that of the cur
rent LMPs was presented in [2], and the following will focus on 
developing an efficient algorithm to obtain the optimal multi
plier as ELMPs. For simplicity but without loss of key features 
of ELMPs, transmission capacity constraints and ancillary ser
vices are not considered. 

The mixed-integer UCED problem has been well solved by 
branch and cut methods, however, in the primal space. To ob
tain ELMPs, multiplier optimality rather than the optimality or 
feasibility of the primal solution is required. Traditional subgra
dient methods suffer from the multiplier zigzagging difficulty 
[3], and are thus ineffective in obtaining the optimal multiplier. 
Central cutting plane methods have been used to solve non-dif
ferentiable optimization problems [ 4], [5]. Given an initial poly
hedron containing the optimal solution, non-optimal portions of 
the polyhedron are iteratively cut off by constructing cuts from 
query points [5]. A key issue is to select query points such that 
effective cuts can be constructed. Without knowing in advance 
which part to cut off, various centers deep inside the polyhedron 
have been investigated as query points. However, centers such 
as the center of gravity or the analytic center can be computa
tionally expensive to obtain. 

In this paper, a subgradient simplex cutting plane method 
(SSCPM) is developed to efficiently solve the dual problem. 
After the literature review in Section II, the UCED problem 
is formulated, and the dual problem is obtained by using La
grangian relaxation in Section Ill. The SSCPM is developed in 
Section IV to solve the dual problem by innovatively using sub
gradients and simplex tableaus. Given an initial polyhedron and 
query point, cuts are constructed from the query point. In the up
dated polyhedron, an adaptive three-level scheme is established 
to obtain the next query point. Rather than calculating centers of 
the polyhedron through an expensive procedure, a point along 
the subgradient is easily obtained as the query point at Level 1. 
However, this point may not always be deep inside the polyhe
dron, resulting in ineffective cuts. In this case, Kelley's query 
point is calculated at Level 2. If effective cuts cannot be con
structed at Kelley's point, then the Chebyshev center is ob
tained at Level 3, and the process repeats. By pivoting simplex 
tableaus, query points at Levels 2 and 3 are efficiently obtained. 

Numerical results are presented in Section V. A simple 
two-hour example illustrates the adaptive three-level process 
to cut off non-optimal multipliers. A 24-hour 32-unit example 
based on the IEEE Reliability Test System shows that our algo
rithm efficiently obtains the optimal multiplier. A MISO-sized 
problem for the day-ahead market and one hundred Monte 
Carlo simulation runs then demonstrate that our method solves 
large problems with robust performance. 

The preliminary results were presented at the IEEE Power 
and Energy Society General Meetings in 2009 [6] and 2010 
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[7]. These results are extended by improving the method, es
tablishing the adaptive transition mechanism, enabling the res
olution of larger problems, and adding large examples. 

II. LITERATURE REVIEW 

The dual problems of mixed-integer minimization derived 
from Lagrangian relaxation are concave and non-differentiable 
[3]. Many methods have been developed to solve them, in
cluding subgradient methods, cutting plane methods, column 
generation methods [8] and multiplier adjustment methods 
[9] as summarized in [10] and [11]. The subgradient method, 
originally presented in [12], iteratively updates multipliers by 
moving along a sub gradient direction obtained after minimizing 
the relaxed problem [13]. This method is easy to implement 
and works well for many applications [14]. However, mini
mizing the relaxed problem can be costly, and multipliers may 
zigzag across facet intersections of the dual function (each 
facet corresponds to one solution of the relaxed problem) [15]. 
To overcome the zigzagging difficulty, the bundle method 
obtains an ascent direction from subgradients of neighboring 
multipliers [15], [16]. The extreme-point subgradient method 
developed in [17] is of this category. Obtaining such an ascent 
direction can be expensive. More importantly, as the problem 
size increases, the number of solutions increases drastically for 
NP hard problems, causing the size of facets to decrease and 
rendering the direction to ascend within a very small neigh
borhood. The surrogate subgradient method was developed to 
reduce the complexity of minimizing the relaxed problem by 
obtaining an approximate solution [18], [19]. The resulting di
rection is smooth and the zigzagging difficulty is alleviated. Its 
step-sizing rule, however, is a major challenge and is currently 
under investigation [20]. 

Cutting plane methods obtain the optimal multiplier by iter
atively constructing cuts from query points to cut off non-op
timal portions of an initial polyhedron, either in the multiplier 
space or in the epigraph space [ 4], [5]. In either space, a key 
issue is to choose query points. Kelly's method obtains the query 
point by maximizing the dual function through its iteratively up
dated polyhedral approximations [21]. The approximation can 
be poor, resulting in ineffective cuts and the method may con
verge slowly as shown in [22]. Central cutting plane methods 
obtain query points at the centers of iteratively updated polyhe
drons [5]. Centers are less sensitive to the quality of approxima
tions and "half' of the polyhedron can always be cut off. Nev
ertheless, centers such as the center of gravity or the analytic 
center can be computationally expensive to obtain. In addition, 
when solving piecewise linear dual problems, central cutting 
plane methods may be slow to identify the optimum [4], [23]. 

Given the query points, effective cuts can be more conve
niently constructed in the epigraph space than in the multiplier 
space. The subgradient simplex cutting plane method will be 
developed in the epigraph space to obtain the optimal multi
plier with improved efficiency by innovatively using subgradi
ents and simplex tableaus. 

III. PROBLEM FORMULATION 

The UCED problem is formulated following the standard 
procedure in Section III-A to minimize the total bid cost 
given system demand. For simplicity, transmission capacity 
constraints and anciHary services are not considered. The dual 

problem is obtained by Lagrangian relaxation following [2] in 
Section III-B. 

A. Unit Commitment and Economic Dispatch Problem 

Consider an energy market with I units and a time horizon 
T. For unit i at time t, state xi(t) is the number ohime periods 
it has been on ( +) or off ( - ) since the previous on/off transi
tion. The commitment decision ui ( t) is whether unit ·i is up (1) 
or down (-1) at time t, satisfying the minimum up/down time 
constraints, i.e., unit i should be kept on if it is online for less 
than the minimum up time ri, and kept off if it is offline for less 
than the minimum down time rf: 

Ui(t) = 1, if 1:::; Xi(t) <Ti, (1) 

·ui(t) = - 1, ifrf < Xi(t):::; -1, Vi, Vt. (2) 

The state xi(t) accumulates to -rid orri ifthere is no start-up 
or shut-down; otherwise xi(t) is 1 or -1: 

Xi(t+l)= Xi(t)+ui(t), if Xi(t)ui(t)>O, 
-rf<xi(t)<r.t, (3) 

Xi(t+l)= Xi(t), if x;(t)·u;(t) >0, 
x;(t)=-T;d or r;:, (4) 

x;(t+ 1) = u;(t), if x;(t)u;(t) < 0, (5) 

Xi(t), u;(t) E N, Vi, Vt. (6) 

Unit i should satisfy generation capacity constraints if it is on
line, i.e., generation p.;(t) is in-between the minimal and max
imal levels p'[;in and Pi~ax : 

Puin :::; Pi(t) :::; Puax, if ui(t) > o, (7) 

p;(t) = 0, if ·u;(t) < 0, Vi, Vt. (8) 

Ramp rate constraints state that between two successive online 
periods, unit i cannot ramp up/down beyond ramp limit Ll;t: 

-6.;t :::; p.;(t) - Pi(t - 1) :::; 6.it, if x.;(t), ·u;(t) > 0, Vi, Vt. 
(9) 

There is a special requirement if unit i is just turned on: 

p;(t) :::; p'ftin + 6.it, if x;(t) < o, u;(t) > O, Vi, Vt. (10) 

For unit i at time t, the bid cost includes the energy cost 
Cit (p; ( t)) as a convex and piecewise linear function of 
Pi(t) with Oit(O) = 0 for a step offer curve, the time-in
variant start-up cost s;p incurred when the unit is turned on 
(x;(t) < 0, u;(t) > 0), and the no-load cost sf[L ifthe unit is 
online ('u;(t) > 0). 

In addition to individual unit constraints (1)-(10), system de
mand constraints require the total generation equal the system 
demand pD ( t) for all time periods: 

I 

LP·i(t) = pD(t), Vt. (11) 
i=l 

The objective is to minimize the total bid cost: 

T I 

min LL { Cit(Pi(t))+s;P(xi(t), u;(t))+sf[L(·ui(t)) }. 
{ u;(t)} , 
{P;(t)} t=l i=l 

(12) 
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Since the objective function and the system demand constraints 
which couple all units together are additive, the UCED problem 
is separable [3]. 

B. Dual Problem 

The Lagrangian function is obtained by relaxing the system 
demand constraints using Lagrangian multipliers {A(t)}: 

L(A, u,p) = ~ { t (Cit (Pi(t)) + S~P (xi(t), Ui(t)) 

+sf[L (ui(t))) + A(t) (pD(t) - tPi(t))}. (13) 

The relaxed problem minimizes (13) given A, and can be decom
posed into unit-level subproblems. The subproblem for each 
unit i, i = 1, ... , I is 

min Li, with 
{u;(t)},{p;(t)} 

T 

L.; = L (cit (p.;(t)) - A(t)pi(t) + syv (xi(t), Ui(t)) 
t=l 

+sf[L ('ui(t))) (14) 

subject to individual unit constraints (1)-(10). Denoting Li(A) 
as the minimized subproblem cost in (14), the dual problem is to 
obtain the multiplier that maximizes the concave and piecewise 
linear dual function [3]: 

max q(A), with 
,\ 

I T 

q(A) = L L:(A) + L A(t)pD(t). (15) 
i=l t=l 

Since the T multipliers relax equality demand constraints, the 
dual problem is an unconstrained maximization. Its epigraph 
form with variables A E RT and z ER is obtained as [3], [5] 

max z 
(>.,z) 

s.t. z s q(A). 

IV. SOLUTION METHODOLOGY 

(16) 

The subgradient simplex cutting plane method is developed 
in this section to solve the dual problem by iteratively cutting off 
non-optimal solutions. Each iteration contains two steps: con
structing cuts from query points by using subgradients and dual 
values in Section IV-A, calculating query points by using sub
gradients or simplex tableaus through an adaptive three-level 
scheme in Section IV-B. 

A. Cut Construction 

An initial polyhedron po containing the optimal solution is 
first determined as 

pO ={(A, z)JO S At S A:,"ax, t = 1, ... , T; 0 S z S zmax}. 
(17) 

If the lower bounds are not zero, they can be converted to zero 
by shifting. By using heuristics and to be conservative, the upper 
bounds are determined based on the most expensive generation 
offers to avoid the exclusion of possible optimal solutions [24]. 
If the optimal solutions are excluded, the solution obtained will 
fall to the upper bounds, and these bounds are then increased 
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(a) (b) 

Fig. I. Initial polyhedron P 0 [the square in (a) and the cube in (b)] is updated 
to the polyhedron P 1 by cuts (19) and (20) [the dashed lines in (a) and the 
hyperplanes in (b)]. 

based on heuristics. An initial query point (A 0 , z0 ) is selected 
inside P 0 , e.g., as its center. 

Given the query point at iteration k, cuts are constructed 
by using the subgradient f(Ak) and the dual value q(Ak). 
To obtain g(Ak) and q(A ), subproblems (14) are solved 
by dynamic programming (DP) in [25], or its enhancement 
which handles units with ramp rate constrains as presented 
in [26]. Optimal subproblem solutions are obtained in these 
DP processes. Otherwise, the optimal multiplier can be cut 
off by an inaccurate cut. After decisions on commitment 
{ ui(t)} and dispatch {Pi(t){, i = 1, ... , I, t = 1, ... , T are 
obtained, the dual value q( A ) is evaluated, and the sub gradient 
g(Ak) = [g1(Ak), g2(Ak), ... , gt(Ak), ... , gT(Ak)f of the 
Lagrangian function (13) is obtained as the level of constraint 
violation: 

I 

gt(Ak) = pD(t) - LPi(t), t = 1, ... 'T. (18) 
i=l 

Orthogonal to the subgradient g(Ak), a tangent to the dual 
function is obtained at (Ak, q(Ak)), and the concave dual func
tion q(A) lies below it. The portion of pk above the tangent is 
non-optimal, and is thus cut off by the following cut: 

(19) 

In addition, the largest dual value obtained thus far qk* is itera
tively updated based on q(Ak), and serves as a lower bound on 
q(A*). The portion of pk lying below it is cut off by the cut: 

(20) 

The polyhedron pk is thus updated by (19) and (20) as 

pk+l=pk n {(A, z)Jz S q(Ak) + gT(Ak)(A - Ak), qk• S z ~ . 
di) 

Fig. 1 shows pk+l in a two-dimensional epigraph space in (a) 
and in a three-dimensional epigraph space in (b). 

B. Query Point Calculation 

An adaptive three-level scheme is developed to obtain the 
next query point in the updated polyhedron pk+l by using sub
gradients and simplex tableaus. A point along the subgradient 
is easily obtained at Level 1. Kelley's query point is obtained at 
Level 2 and the Chebyshev center is obtained at Level 3, both 
as needed and by pivoting simplex tableaus. 

Level I: The Sub gradient Midpoint: By letting z equal q( A k), 
(19) is equivalent to the following cut in the multiplier space: 

q(Ak) s q(Ak) + g(Akf (A - Ak). (22) 
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(a) (b) (c) 

Fig. 2. Subgradient midpoint ,\k+ 1 at Level I with z = qk*, i.e., on the hori
zontal hyperpla~e in the epigraph space ofFig. l(b). Subfigures (a), (b), and (c) 
are for cases qk = q(,\k), qk > q(,\1'), and q1' » q(,\k), respectively. 

It is the acute angle direction and is a "neutral cut," since it 
passes through )..k [5]. With )..k on the new boundary of the 
updated polyhedron p;+1 of>., searching from )..k along the 
subgradient g(>.k), a point )..k+1 in p;+l halfway before hitting 
another boundary can be easily obtained as shown in Fig. 2(a). 
This "subgradient midpoint" has been used as the starting point 
of Newton's method to calculate the analytic center of p;+1 

[27]. In fact, the point itself can be deep inside p;+l and will 
be used directly as the query point at Level 1. 

The above process of obtaining the subgradient midpoint can 
be re-casted in the epigraph space of ().., z) augmented by one 
additional degree of freedom z, however, with complications. 
To cut off a large non-optimal portion, z is set to be qk' in (20). 
Combining with (19), we have 

qk' ::; q(>.k) + g(>.kf(>. - )..k). (23) 

Cut (23) cuts off those multipliers whose dual values are known 
to be less than qk*. If qk* = q(>.k), then Fig. 2(a) is obtained. If 
qk* > q().. k), then )..k itselfis cut off. Ifthere is still a segment of 
the subgradient lying within p;+1 as shown in Fig. 2(b), then 
)..k+1 can be similarly obtained halfway between ,1 = )..k + 
(j__g(>.k) on the new boundary (23) with 

qk* - q(>.k) 
f}_ = gT()..k)g(>.k) (24) 

and 'X = )..k + Bg(>.k) on another boundary of p;+1 with 7J 
obtained as presented in [27]. However, if qk' is substantially 
larger than q(>.k) (f}_ 2 B) such that there is no segment of the 
subgradient lies within p;+1 as shown in Fig. 2(c), then the 
Chebyshev center will be calculated at Level 3. 

When the subgradient midpoint).. k+ 1 is obtained, the distance 
between )..k+l and the boundary of p;+1 : 

(25) 

is used to evaluate whether )..k+1 is deep inside p;+1 . An ap
proximate sizer of the polyhedron p;+l is initially determined 

by half of the minimal >.;""x, t = 1, ... , T in (17) and is up
dated by the latest Chebyshev radius of pk+l to be obtained at 
Level 3. If d is small compared tor, or d keeps decreasing, then 
)..k+l is not deep inside P;.·+1 and Level 1 will be transitioned to 
Level 2 at the next iteration. Transition is typically made when 
d < 2r or d keeps decreasing for 3 iterations before )..k+1 is far 
away from the "center." 

Level 2: Kelley's Query Point: The polyhedron pk+l in (21) 
is constrained by a polyhedral approximation of the piecewise 
linear dual function [3]: 

min {q(>.o)+gT(>.o)(>.->.o), ... , q(>.k)+gT(>.k)(>.->.k)}. 
(26) 

By maximizing z over pk+l, Kelley's point )..k+l that maxi
mizes this approximation is obtained for Level 2. This linear 
programming (LP) problem is solved by pivoting simplex 
tableaus. In our algorithm, simplex tableaus are used to cal
culate query points at Level 2 and Level 3. Although simplex 
methods have been well developed to solve LP problems, 
there are fixed numbers of constraints and the basic solutions 
described by the tableaus are always feasible in the pivoting pro
cesses. In the SSCPM, cuts (constraints) are iteratively added 
as in (21), and the basic solutions may be cut off (become 
infeasible). To address this, the idea is to add cuts as additional 
rows to the tableaus, and to restore feasibility by moving to the 
cuts that create the infeasibility while maintaining feasibility 
to existing constraints. By using the resulting tableaus, LP 
problems at Level 2 and Level 3 can be solved more efficiently 
than by directly using standard simplex methods. 

To construct tableaus, the polyhedrons defined by linear in
equalities are converted to the standard equality form by adding 
slack variables [28]. The initial tableau at iteration k = 0 is con
structed for polyhedron po in (17) with standard form A 0 x = 
b0 , x 2 0. A basic feasible solution xg is obtained at the origin 
and the initial tableau with basis B 0 is constructed as 

(27) 

Given the tableau for pk at :i::~, cut (19) in the standard form 
akx = bk, is added as an additional row [28]: 

Ak 
(28) 

where ak Bk contains the elements in the basic columns of ak. 
By using the partitioned matrix inverse formula, (28) is obtained 
as the tableau in (29) at the bottom of the page, which involves 
only basic matrix operations [28]. 

The tableau of a basic solution for pk+l is obtained in (29). 
However, this solution may be infeasible, since x~ can be cut 
off by cut (19). This infeasibility is identified from (29) by the 
associated negative basic variable: 

k -1 k 
bk - ak,Bk (B ) b < 0. (30) 

To restore feasibility, the idea is to move from x~ to a vertex on 
cut (19), since x~ is only infeasible for cut (19). Feasibility for 

(29) 
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Fig. 3. Example to illustrate the usage of simplex tableaus. 

TABLE I 
SIMPLEX TABLEAU AT yA FOR POLYHEDRON pADEO 

X1 X2 X3 X<t 
X1 1 413 1 0 4 

X<t 0 7/3 1 1 5 

TABLE II 
SIMPLEX TABLEAU AT y A FOR POLYHEDRON P 8 KEO 

X1 Xz X3 X4 X5 

Xt 1 4/3 1 0 0 4 
X4 0 7/3 1 1 0 5 
X5 0 213 -1' 0 1 -1 

existing constraints defining pk is maintained along the way. A 
vertex on cut (19) is obtained when (30) is increased to zero by 
pivoting tableau (29) with the entering non-basic variable Xj• 

selected as 

j*=argmjn{ak-ak,B" [(Bkf 1Ak o]}. (31) 

Cut (20) can be added in a similar way, and a tableau for pk+l 

is then obtained at a basic feasible solution x~+l as 

(32) 

The tableau in (32) can be directly used as the tableau for 
the initial basic feasible solution of the LP problem at Level 2. 
Pivoting from x~+l, the optimal vertex xk+1 of pk+l maxi
mizing z is obtained following the standard simplex method as 
presented in [28] and [29]. 

To illustrate the above tableau method, a simple example is 
used to calculate Kelley's query point. As shown in Fig. 3, poly
hedron pBKEo is obtained by updating polyhedron pADEO: 

with cut CB[{: 

4 
X1 + 3x2 + X3 = 4 

- X1 + X2 + X4 = 1 

X1,X2 2:: 0 

(33) 

(34) 

(35) 

(36) 

To calculate Kelley's point for pBKEO given the tableau for 
pADEO at vertex VA in Table I, the tableau (29) for a basic so
lution is first obtained in Table II by adding cut C8 K. In Table II, 
the basic variable associated with cut cBK is -1 < 0, and the 
basic solution at VA thus is infeasible. To restore feasibility, 
Table II is pivoted following (31 ). Tableau (32) for a basic fea
sible solution at V 8 is then obtained in Table III. 
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TABLE III 
SIMPLEX TABLEAU AT 1/8 FOR POLYHEDRON pBI<EO 

X1 Xz X3 X4 Xs 

X1 I 2 0 0 1 3 

X<t 0 3 0 I 1 4 

X3 0 -213 I 0 -1 1 

Table III is used as the tableau for the initial basic feasible 
solution of the LP problem to maximize x 2 over pBK EO. Piv
oting from this tableau following the standard simplex method, 
Kelley's point is attained at vertex VK = (1/3, 4/3). 

After Kelley's query point is obtained, a large non-optimal 
portion can be cut off by cut (20) if polyhedral approximation 
(26) approximates the dual function well and qk* is significantly 
improved to q(>.k+1 ). Level 2 is then transitioned back to Level 
1. In addition, when (26) already contains facets that intersect 
at the optimal point of the piecewise linear dual function, the 
optimum ( >. *, q( >. *)) is immediately obtained. However, it is 
difficult to assess beforehand whether the dual value q( >. k+l) is 
larger than qk*. If q( >. k+l) is obtained less than qk*, then Level 
3 will be used at the next iteration. A special situation is at the 
early stage iterations when a good approximation is unlikely to 
be obtained and Level 1 is directly transitioned to Level 3 as 
needed. The number of early stage iterations depends on the dual 
function complexity. 

Level 3: The Chebyshev Center: As reviewed in Section II, 
centers lie deep inside a polyhedron and are good query points to 
construct effective cuts. Among various centers, the Chebyshev 
center is determined by an LP problem that can be solved by 
pivoting simplex tableaus derived from (32), and is therefore 
selected as the query point for Level 3. For polyhedron pk+l 
described by linear inequalities {a.;x ::; bi, i = 1, ... , m, x = 
(>., z) 2:: O} in (21), the Chebyshev center xk+1 is a point in 
pk+l that maximizes the smallest distance r (the Chebyshev 
radius) from that point to the boundaries, i.e., it solves the LP 
problem [30]: 

mu r 0n 
s.t. aix + lla;!ir ::; bi, i = 1, ... , m (38) 

- Xj + r :S: 0, j = 1, ... , T + 1 (39) 

x,r ::::=: o. (40) 

To solve this LP problem, it is noted that with x~+l from (32) 
and r = 0, (a::~+ 1 , 0) is a basic feasible solution to (37). The 
corresponding simplex tableau is constructed by adding to (32) 
an additional column associated with the new variable r. With 
coefficients for the new variable given by 

(41) 

constraints (38) are now captured by the following tableau: 

(42) 

The additional (T + 1) constraints (39) are then added to (42) 
as additional rows similarly as in (29). The tableau of the initial 
basic feasible solution thus is obtained and the LP problem is 
solved by pivoting following the standard simplex method. 

To illustrate this, the previous example in Fig. 3 is used to cal
culate the Chebyshev center of polyhedron pBK EO. To solve 
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TABLE IV 
SIMPLEX TABLEAU WITH THE ADDITIONAL COLUMN ASSOCIATED WITH r 

X1 X2 X3 

X1 1 2 0 

~ 0 3 0 
X3 0 -2/3 1 

X4 

0 
1 
0 

X5 r 
1 -./5 

1 -./2+-./5 

-1 5/3--./5 

Construct cuts and 
obtain -<"'' by Level i 

i= 1,2,3 

3 
4 
I 

Calculate A: •1 by Level i 
LI: Sub gradient Midpoint 
L2: Kelley's Query Point 
L3: Chebyshev Center 

Fig. 4. Flowchart of the SSCPM. 

TABLEV 
SUPPLY OFFERS FOR EXAMPLE I 

Unit pnun P""" Block! Block2 Start- No-
MW MW Cost Size Cost Size up$ load$ 

$/MWh MW $/MWh MW 
1 20 210 65 100 110 200 3800 0 
2 20 200 40 JOO 90 100 3000 600 
3 50 190 25 JOO 85 JOO 1100 800 

the LP problem (37) with the new variable r and coefficients 
Ar = [5/3; .../2; .../5], tableau (42) is first obtained in Table IV 
by adding to Table III an additional column. 

The constraints (39) are then added to Table IV as additional 
rows, and the tableau for an initial basic feasible solution is ob
tained. Following the standard simplex method, the Chebyshev 
center is attained at point C = (0.57, 0.57) and the Chebyshev 
radius is 0.57. 

After the Chebyshev center a;k+i is obtained, effective cuts 
are constructed since a;k+l is deep inside pk+1, and Level 3 is 
then transitioned back to Level I. As a by-product of solving 
the LP problem (37), the Chebyshev radius rk+1 provides an 
approximate size of pk+l and has been used to determine the 
adaptive transition at Level I . It is also used in the stopping 
criteria below. 

The SSCPM stops when non-optimal portions of pk+I are 
cut off and the distance from >.k+1 to the optimum).* is suffi
ciently small. The Chebyshev radius rk+1 is the radius of the 
maximum-volume ball inscribed pk+1, and is used as a rough 
measurement: 

(43) 

where c is the stopping threshold [31]. The ball inscribed pk+l, 
however, may not guarantee the solution optimality, and a cir
cumscribed solid of pk+l is then calculated. As compared with 
circumscribed solids such as the ellipsoid, the orthotope is com
paratively easy to obtain by solving 2(T + 1) LP problems: 

min x·-x~+1 j=l, ... ,T+l (44) 
:i:EPk+1 3 3 ' 

and 

max X-. - x-~+ 1 . 1 T +· 1 
:i:EP'•+l J J ' J = ' ... ' . (45) 

If the circumscribed orthotope is sufficiently small, then the so
lution is close enough to the optimum. Otherwise, the stopping 
threshold c is reduced to cut off the remaining non-optimal so
lutions. 

There is a special case that the dual function has a flat facet 
at z = q(>.*). The dual problem thus has infinite optimal solu
tions and they form this flat facet. In this case, the Chebyshev 
radius r"'+l is still small to satisfy (43), since in the epigraph 
space it can be determined by the distance from the Cheby
shev center to the boundaries on z. If the circumscribed ortho
tope is sufficiently flat, then the solution is also close enough to 
the optimum. Such multi-solution case occurs under extremely 
rare conditions in real markets. Optimal solutions, however, are 
equivalent form the optimization point of view, and are valid 
LMPs when LMPs are calculated [32]. Accordingly, the optimal 
solution obtained by the SSCPM among infinite optimal solu
tions can be used as ELMPs. 

Other stopping criteria have also been used when solving the 
dual problem such as a fixed number of iterations in [33] or a 
small duality gap in [24]. However, these criteria may not be suf
ficient to obtain the multiplier optimality. In addition, searching 
for feasible primal solutions is needed to obtain the duality gap. 

The flow chart of the overall algorithm is presented in Fig. 4. 

V. NUMERICAL RESULTS 

The SSCPM was implemented in Matlab7.01 on an Intel Core 
2 Duo CPU T9300 2.50-GHz Dell. M6300 laptop. Three exam
ples are presented. Example 1 is a simple two-hour problem 
to illustrate the adaptive three-level process. Example 2 is a 
24-hour 32-unit problem based on the IEEE Reliability Test 
System, and is used to show the efficiency of the SSCPM. Ex
ample 3 is a MISO-sized problem for the day-ahead market to 
show the capability of solving large problems, and 100 Monte 
Carlo simulation runs to demonstrate the robust performance of 
the SSCPM. Complete testing data and results for Examples 1 
and 2 are at http://www.engr.uconn.edu/msl. 

Example 1: Consider a two-hour problem with system de
mand pD = [320; 450]. Three supply offers are specified in 
Table V, with each identical over the two hours. 

The initial polyhedron P 0 in (17) is selected as { ( >., z) IO ~ 
At ~ 150, t = 1, 2; 0 ~ z ~ 105 }, and the initial multiplier >.0 

is selected as (50, 50). 
The problem is solved by using the SSCPM in the epigraph 

space through the following adaptive three-level process. The 
updated polyhedron pk+l is shown in Fig. 5 for iterations k = 
0, 2, 6 and 7. At these iterations, the process to cut off>. with 
z = q"'• is shown in Fig. 6. In subfigure (a), cuts are constructed 
from >.0 to obtain the updated polyhedron P 1• By using Level 
1, >.1 is obtained and the process repeats, e.g., at iteration 2 as 
shown in subfigure (b ). Level 1 is transitioned to Level 2 at 
iteration 4. However, the dual value q(>.4 ) = 51100 is less than 
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(a) (b) level curve 

x104 105 

10 7.6 
100 

N 5 5.5 

1~6 
95 

120 

0 0 50 50 "' 90 K' 

x 104 (c) x 104 (d) 
85 

5.2 

5.14 5.145 80 

5.08 
95 

90 
90.1 85.1 

75 80 85 90 95 100 
ll.2 85 60 :l.1 84.9 ll.1 1'.1 

Fig. 5. Updated polyhedron pk+t for Example I. In each subfigure, the hor- Fig. 7. Trajectories of multipliers by using the SSCPM and the SM for Example 
izontal plane is cut (20) and other planes are cuts (19). As pk+t is updated, I. 
some cuts become redundant and they are not plotted to clearly present pk+t. 
(a)k = 0. (b)k = 2. (c)k = 6. (d)k = 7. 

85 

'·1 '·1 
(c) (d) 

95 90.1 
j/' 

,•' 90.05 

~ 90 90 

·-. 
89.95 

8580 89.9 
85 90 84.9 84.95 85 85.05 85.1 

'-1 i.., 

Fig. 6. Process to cut off A with z = qk' for Example 1. The curves are level 
curves. In each subfigure, the solid line is the cut of iteration k with z in (19) 
set to be qk*. When qk* is increased to q•• at a later iteration i > k, the cut of 
iteration k is depicted by a dashed line labeled by k. (a) k = 0. (b) k = 2. (c) 
k = 6. (d) k = 7. 

q3* = 51339, and Level 2 is transitioned to Level 3 to obtain 
>. 5 . At iteration 6 as shown in subfigure ( c ), >. 6 is obtained by 
using Level 1. Since >. 6 is not deep inside, Level 2 is used to 
obtain>. 7 in subfigure ( d). At iteration 8, Level 1 fails to obtain 
>.8 • Level 3 thus is used and obtains the Chebyshev radius as 
zero, indicating that >. 7 = ( 85, 90) is the optimal multiplier. 

The trajectory of multipliers in the above process of the 
SSCPM is compared with that of subgradient method (SM): 

(46) 

The step size sk is given by 

sk = ak 7j - q(>.k) 0 < ak < 2 
llg(>.k)ll 2 ' 

(47) 

where q is an estimate of the optimal dual value and is obtained 
by solving the primal problem (12). Among different ways to 

Unit type 

Ul2 
U20 
USO 
U76 

UIOO 
U155 
Ul97 
U350 
U400 

TABLE VI 
GENERATION OFFERS OF EXAMPLE 2 

No.of pmm P"""' Incremental 
Unit~ MW MW cost$/MWh 

5 3 12 67.15 
4 4 20 65.9 
6 0 50 15 
4 10 76 12.16 
3 100 100 56.60 
4 20 155 10.42 
3 20 197 57.42 
I 35 350 10.85 
2 40 400 43.03 

Start-up 
$ 

247 
32.5 

0 
727.l 
1625 

317.2 
2880 
2336 
6000 

select parameter a.k such as those in [11] and [34], a.k is set 
to be 1 for simplicity as recommended by [3]. As can be seen 
in Fig. 7, the SM suffers from the zigzagging difficulty, and 
the zigzagging is not observed in the SSCPM. By adaptively 
transitioning among the three levels, the zigzagging difficulty is 
overcome in the SSCPM. 

Example 2: Consider a 24-hour 32-unit problem based on the 
IEEE Reliability Test System of 1996 [3 5]. The system includes 
generating units, hourly system load of a year, and a transmis
sion network. Since transmission is not considered in our work 
here, only generating units and hourly system load are used. 
Generation offers as presented in Table VI are obtained from 
production costs following [36]. All units are assumed initially 
off for simplicity. The peak-load day within the year is selected. 
To capture a few key features ofELMPs, these data are slightly 
modified. 

The initial polyhedron is selected as {(>., z)llO S At :::; 
70, t = 1, ... , 24; 0 :::; z :::; 107 }, and >.0 is selected as its 
center. Performance of the SSCPM is compared in Table VII 
with that of each level alone implemented by disabling transi
tions to other levels within the SSCPM. Simplex tableaus are 
thus used in Level 2 alone and Level 3 alone, but not in Level 1 
alone. Also, since neither Level 1 alone nor Level 2 alone has the 
Chebyshev radius, their stopping criteria is !>.k+l _>.k I :::; 10-4 • 

Otherwise, ( 43) is used with the stopping threshold c: = 10-4 • 

Level 1 alone can also stop if it cannot obtain>. k+i as explained 
in Fig. 2( c ). After Level 1 alone or Level 2 alone stops, the 
Chebyshev radius is calculated to complete the comparison in 
Table VII. 



WANG et al.: SUBGRADIENT SIMPLEX CUTTING PLANE METHOD FOR EXTENDED LOCATIONAL MARGINAL PRICES 2765 

TABLE VII 
PERFORMANCE COMPARISON FOR EXAMPLE 2 

Iteration CPU time (s) Dual value ($) ChebyRad 
Level 1 alone 26 <0.1 1365910.45 6.37 
Level 2 alone 297 7.2 1367213.04 1.31 x10·11 

Level 3 alone 154 1.5 1367213.00 3.73xl0'5 

SSCPM 118 0.8 1367213.04 3.75xl0"12 

As presented in Table VII, query points are obtained quickly 
for Level 1 alone, but the final dual value is less than those of 
other methods since >.k+1 may not be deep inside Pk+I, or the 
method may not be able to obtain >.k+1, leading to premature 
algorithm termination. With Chebyshev radius 6.37, pk+l still 
contains significant non-optimal portions. Level 2 alone obtains 
the optimum when facets that intersect at the optimum are ob
tained in approximation (26), but converges slowly since (26) 
may not always be good especially at the early stage iterations. 
Level 3 alone uses fewer iterations than Level 2 alone because 
the Chebyshev center is always deep inside p;+1 . However, 
it may be slow to identify the optimum. The SSCPM, with 64 
Level 1 iterations, 7 Level 2 iterations and 47 Level 3 iterations, 
uses less CPU time than Level 3 alone by adaptively taking ad
vantages of all the three levels. 

It is difficult to compare the SSCPM with methods reviewed 
in Section II because of different problems tested, stopping cri
teria used, and implementation environments. Nevertheless, the 
analytic center cutting plane method reported in [24] solved a 
32-unit commitment problem by using 41 iterations in 55 son a 
Pentium 200-MHz computer, and stopped when the duality gap 
is less than 1 %. With this loose stopping criterion, the multiplier 
obtained may still be away from the optimum. 

We also used the commercial software CPLEX 12.2 to solve 
the dual problem on the same Dell M6300 laptop to compare the 
performance with that of the SSCPM. In CPLEX, the mix-in
teger problems to minimize (13) given>. are solved by branch 
and cut methods, and multipliers are updated by the subgradient 
method as described in (46) and (47). The solutions of both 
methods are compared with the optimal multiplier >. * obtained 
by tightening the stopping criteria of the SSCPM as c: = 10-10 • 

The multiplier obtained by the SSCPM using 0.8 s in Table VII 
is identical to>.*. The multiplier obtained by CPLEX using sim
ilar amount of CPU time is away from the optimum as shown 
in Fig. 8. By using more CPU time, e.g., 10 s, the multiplier 
obtained by CPLEX is still not optimal. When the Lagrangian 
dual problem is solved in CPLEX by the subgradient method, 
multiplier optimality is not guaranteed or may not be obtained 
efficiently as reviewed in Section II [11]. 

With the optimal multiplier obtained by the SSCPM, ELMPs 
are compared with LMPs in Fig. 9. ELMPs can be higher than 
LMPs, e.g., at t = 1and12, due to the incorporation of start-up 
cost, and they can be lower than LMPs, e.g., at t = 9 and 23, 
since offiine units can set ELMPs. For most hours, however, 
ELMPs are equal to LMPs. In real day-ahead market especially 
with virtual demand and supply, ELMPs can be closer to LMPs 
[37]. Since the purpose of this paper is to obtain ELMPs effi
ciently, comprehensive comparison is referred to [2] and [37]. 

Example 3: A MISO-sized problem forthe day-aheac;l market 
is solved by using the SSCPM. This problem has 873 units and 
is subject to all the constraints of Section III. In addition, some 
units must be on or off at certain hours, and this requirement 
is handled within the DP processes after appropriate modifica
tions. For this large problem, the stopping threshold c: in (43) 

80 

70 

60 

:;; 50 :a 
E 

i 40 

30 

20 

10 

.. 

2 4 6 8 10 12 14 16 18 20 22 24 
hour 

Fig. 8. Comparison of the multiplier obtained by the SSCPM and the multi
pliers obtained by CPLEX for Example 2. 

0 2 4 6 8 10 12 14 16 18 20 22 ~~ 
hour 

Fig. 9. Comparison ofELMPs and LMPs for Example 2. 

TABLE VIII 
DISTRIBUTION OF ITERATIONS AND THE TOTAL CPU TIME FOR EXAMPLE 3 

Subproblems Query point calculation Others 
97.44% Level 1 Level2 Level 3 0.31% 

0.03% 0.54% 1.68% 
218 iter. 35 iter. 236 iter. 

is set to be 0.01. To avoid an over-sized initial polyhedron po. 
in (17), a simple single-hour dual problem is solved for each 
hour t, t = 1, ... , 24, assuming that all units are initially off. 
The resulting multipliers are appropriately increased and used 
as upper bounds in (17). If the upper bounds are too small, the 
solution will fall to these upper bounds, and they are further in
creased based on heuristics. Lower bounds are set to be 0, and 
>. 0 is selected as the center of po. 

The 24 single-hour dual problems for the initialization are 
solved by using 0.11 s. Each single-hour problem is solved 
fast because there is only one multiplier and it is easily up
dated. Also, subproblems of the single-hour problem are 
solved without using sophisticated DP to manage complicated 
inter-temporal constraints, and loose stopping criteria are used. 
Computational complexity of the 24-hour problem increases 
drastically and the overall dual problem is solved by using 489 
iterations in 778 s. Table VIII shows the distribution of these 
iterations and time over key segments of the algorithm. 

As can be seen, a major portion of the CPU time is on solving 
subproblems, and query points are efficiently calculated because 
of effective uses of the three levels. As shown in Fig. lO(a), as 
more cuts are obtained to describe updated polyhedrons over 
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(a) CPU time (s) 
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iteratiton 

Fig. 10. (a) CPU time per iteration for query point calculation. (b) Dual value. 
(c) Chebyshev radius (of Level 3 iterations) for Example 3. 

iterations, the CPU time to calculate the query point at each it
eration increases moderately because of the innovative usage of 
subgradients and simplex tableaus. By adaptively transitioning 
among the three levels, query points are of good quality to con
struct effective cuts as indicated by q(>.) in Fig. lO(b) and the 
Chebyshev radius in Fig. 10( c) over iterations. 

To evaluate the robustness of the SSCPM, 100 Monte Carlo 
simulation runs are performed using the above problem as the 
base case. Incremental energy offers, start-up and no-load offers 
are obtained by perturbing the base case with Gaussian distribu
tions with standard deviations selected as 10% of the base case 
values. Load at each hour is obtained by perturbing the base case 
with a uniform distribution with interval length selected as 10% 
of the base case value, and is truncated as needed to preserve the 
load pattern. These 100 dual problems are solved with the same 
initialization process and stopping criterion as those in the base 
case. 

The 100 simulation runs are re-ordered according to the 
number of iterations used to solve the dual problem. These 
numbers of iterations, total CPU times and final Cheyshev 
radiuses are depicted in Fig. 11. The curve for the number 
of iterations across the 100 runs is relatively flat, indicating 
robust performance. The curve for the CPU time is of a similar 
pattern, and shows that as the number of iterations increases, 
the CPU time increases moderately. Final Cheyshev radiu&rs 
seem to be unrelated to the number of iterations or the CPU 
time, but are all less than 0.01 when the algorithm stops. As can 
be seen from Table IX, their standard deviations are not large, 
indicating the robustness of the SSCPM. 

VI. CONCLUSION 

Extended LMPs incorporate commitment-related costs and 
minimize uplift payments. To obtain them, the SSCPM is 
developed in this paper to solve the dual of the UCED problem. 
Different from previous results to solve dual problems, multi
plier optimality as opposed to the optimality of the primal cost 
is required. By innovatively using subgradients and simplex 
tableaus, an adaptive three-level scheme is developed to effi
ciently obtain query points so that non-optimal multipliers are 
iteratively cut off. MISO-sized cases for the day-ahead market 
without transmission or ancillary services are efficiently solved 
with robust performance. If transmission and ancillary services 
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Fig. 11. Simulation results for Example 3. 

TABLE IX 
PERFORMANCE SUMMARY FOR EXAMPLE 3 

Minimum Maximum Average Stdev 
Iteration 324 492 390 33 

CPU time (s) 507.9 791.6 618 56 

ChebyRad (IO"') 4.6 10 9.1 1.0 

are considered based on a DC power flow network, additional 
multipliers will be introduced to relax each constraint at each 
time. Problem solution framework can be maintained while 
the problem complexity will increase significantly due to the 
increased dimensionality of decision space and the complicated 
coupling of energy and reserve products. The SSCPM is good 
for Lagrangian relaxation-based approaches when multiplier 
optimality is essential. 
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