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Abstract-In deregulated electricity markets, short-term load 
forecasting is important for reliable power system operation, and 
also significantly affects markets and their participants. Effective 
forecasting, however, is difficult in view of the complicated effects 
on load by a variety of factors. This paper presents a similar 
day-based wavelet neural network method to forecast tomorrow's 
load. The idea is to select similar day load as the input load based 
on correlation analysis, and use wavelet decomposition and sep­
arate neural networks to capture the features of load at low and 
high frequencies. Despite ofits "noisy" nature, high frequency load 
is well predicted by including precipitation and high frequency 
component of similar day load as inputs. Numerical testing shows 
that this method provides accurate predictions. 

Index Terms-Neural network, short-term load forecasting, sim­
ilar day, wavelet. 

I. INTRODUCTION 

S HORT-TERM load forecasting (e.g., forecasting to­
morrow's load at hourly intervals) has been essential for 

reliable power system operation. It becomes more important 
after power system deregulation since forecasted load is used 
by market operators to determine day-ahead market prices, 
and by market participants to prepare bids. Short-term load 
forecasting, however, is difficult in view of the complicated 
effects on load by a variety of factors. 

Many short-term load forecasting methods have been devel­
oped, and representative methods include regressions, similar 
day methods, and neural networks. Regression methods [1], [2] 
assume that there are prespecified functional forms describing 
quantitative relationships between load and affecting factors 
(e.g., weekday index and weather). Functional coefficients are 
estimated through regression analysis of historical data. 

Similar day methods are based on searching historical days 
that have weekday index and weather similar to the forecasted 
day [3], [4]. In these methods, the forecasted load is the load 
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of one similar day or a combination of several similar days' 
load with appropriate adjustments. These methods are simple 
and intuitively appealing since load of the similar days and of 
the forecasted day are usually similar. However, these methods 
may not be sufficient enough to capture complex load features 
if used alone. 

Neural network methods also assume a functional rela­
tionship between load and affecting factors, and estimate 
the functional coefficients by using historical data. Different 
from regression methods, the functional forms can be highly 
nonlinear. To forecast tomorrow's load, the standard neural 
network method [5]-[8] uses a single network with tomorrow' s 
weekday index, predicted weather, and most recently available 
load (e.g., yesterday's load) as inputs. By using a single net­
work, high frequency (fast changing) load features and low 
frequency (slow changing) load features are mixed together 
and treated without distinction. Since high frequency load 
features are usually less obvious than low frequency load 
features, these methods cannot well capture rapid changes in 
load. Additionally, since yesterday's load does not have a good 
enough correlation with tomorrow's load, the input load used 
in these methods has restricted prediction power, resulting in 
limited prediction accuracy. 

In addition to the above representative methods, a method 
that combines wavelet decomposition and neural networks has 
been reported in the literature [9]. This method uses wavelet to 
decompose load into a low frequency component and three high 
frequency components. It opens the door for analyzing complex 
load features at different frequencies. However, since the high 
frequency load components are mistreated as noise, the high 
frequency load features are not appropriately captured. 

Based on the above understanding, this paper presents a 
generic framework that combines similar day selection, wavelet 
decomposition, and neural networks to forecast tomorrow's 
load. The key idea is to select the similar day's load as the 
input load, apply wavelet to decompose it into a low frequency 
component and a high frequency component, and then use 
separate networks to predict the two components of tomorrow's 
load. The similar day's load is selected based on ISO New 
England's practice [3]. Correlation analysis shows that this 
load has higher prediction power than yesterday's load used 
in most NN methods. Also, high frequency load is not treated 
as noise following the literature [9]. Rather, the features of 
high frequency load are captured by including precipitation 
and the high frequency component of the similar day load as 
inputs to the high frequency network. The similar day load is 
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Fig. !. Overall structure of SIWNN. 
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Fig. 2. Weekly patterns of New England load (August 25, 2003-August 31 , 
2003). 

further supplemented by today's predicted load at hour 24 to 
capture the initial status of tomorrow's load. Numerical results 
for a simple example and for forecasting New England load in 
Section III show that our method produces accurate forecasts, 
and demonstrate the significant values of using similar day's 
load, wavelet decomposition, and separate neural networks. 
The method has been extended to include multilevel wavelet 
decompositions and holiday corrections for short-term load 
forecasting [10], and multilevel wavelet decompositions with 
data prefiltering for very short-term load forecasting [11] with 
very good results. 

II. SIMILAR DAy-BASED WAVELET NEURAL NETWORKS 

A similar day-based wavelet neural network method 
(SIWNN) is developed to predict tomorrow's load. It consists of 
similar-day based input selection, wavelet decomposition, and 
neural networks as depicted in Fig. 1. The inputs are selected 

3OOO0 r--------------------------------

~ 20000 +----:-:;;~ 

6 
~ 10000 ;------"'-

O+---~--~--_r---~---~ 
-30 o 30 60 90 120 

Wind-chill Temperature 

Fig. 3. Load versus Twc (New England data for 2006). 

from the information available by hour 91 today, and include 
historical actual load and weather until hour 8 today, predicted 
load for today's remaining hours (produced by SIWNN yes­
terday), and tomorrow's predicted weather. 

In the following, Section II-A describes the major load 
affecting factors including weekday index and weather. Sec­
tion II-B presents the selection of similar days and the use of 
their load as the input load, supplemented by today's predicted 
load at hour 24. Section JI-C introduces wavelet decomposition 
used to decompose the input load into low and high frequency 
components. Section II-D then presents the two neural net­
works used to separately predict the low and high frequency 
load components. Forecasts obtained by using the two networks 
are added up to be the predicted load. 

A. Weekday Index and Weather 

Weekday index is an important load affecting factor in view 
that different days of a week generally have different load shapes 
as shown in Fig. 2. It can be seen that load shapes for Tuesday, 
Wednesday, and Thursday are alike, and load shapes for other 
days of a week are quite different. 

Beyond weekday index, weather is the major drive for load. 
Weather information used in SIWNN includes wind-chill tem­
perature, humidex, wind speed, cloud cover, and precipitation. 

Since temperature that is felt could be much lower than air 
temperature in winter in view of the effects of wind, wind­
chill temperature that measures the felt temperature is used for 
winter. According to [12], it is calculated based on air tempera­
ture and wind speed as follows: 

Tw e == 35.74 + O.6215Ta - 35.75vo. 16 + 0.4245TavO. 16 (1) 

where Twe, T a , and v, respectively, denote wind-chill tempera­
ture, air temperature, and wind speed. To quickly examine the 
effects of Twe on load, the scatter plot of load versus T we is pre­
sented in Fig. 3 based on New England data, with horizontal 
axis representing T we and vertical axis representing load. It can 
be seen that the general shape is nonlinear, and has a V -shaped 
pattern. The large range ofload values for a given Twe is caused 
by the effects of other factors (weekday index, hour, and other 
weather information). 

In view that a linear function is easier to learn than a nonlinear 
function due to its simplicity, the nonlinear data pattern in Fig. 3 

lSIWNN is developed for ISO-NE's load forecasting performed around 9:00 
am each day. 
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Fig. 5. Load versus humidex. (a) Original. (b) Processed. 

is converted to a near linear pattern by processing Twc with the 
following V-shaping function: 

(2) 

where T~e denotes the processed wind-chill temperature, and 
ewe is a parameter determined based on Fig. 3. With this, load 
versus the processed wind-chill temperature is shown in Fig. 4. 

The combined effects of heat and humidity cause high level 
of discomfort in summer. Therefore, humidex that measures the 
combined effect of heat and humidity is used for summer. Ac­
cording to [13], it is calculated based on air temperature Ta and 
dew point as follows: 

H = Ta+0.5555 x (6.11 x e5417.753X(2f:;.16-i) -10) (3) 

where H denotes humidex, and D dew point. Similar to wind­
chill temperature, H is also processed with a V -shaping func­
tion. Scatter plots of load versus H and load versus the pro­
cessed H are, respectively, presented in Fig. 5(a) and (b). 

For ease of neural network implementation, wind-chill tem­
perature and humidex are used throughout the year. Cloud cover 
that measures sunshine intensity, and precipitation that mea­
sures rain/snow volume are also used. 

B. Similar Day-Based Load Input Selection 

Historical load is usually used as input for neural network­
based prediction. A key question is how to properly select the 
days. To forecast the load of tomorrow (day D), the common 
practice is to use the most recently available load, i.e., the load 
of yesterday (D-2), and the load of one week ago (D-7, with the 
same weekday index) [5]-[8]. To examine the goodness of this 
practice, the scatter plot of actual load of the forecasted day (D) 
versus load of D-2 for New England 2006 data (including both 
weekdays and weekends) is presented in Fig. 6. It can be seen 
that the general pattern in Fig. 6 is linear. Correlation coefficient, 
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Fig. 7. Actual load of the forecasted day versus similar day's load (New Eng­
land 2006). 

a measure of prediction power contained in the D-210ad,2 how­
ever, is only 0.67. This indicates that this selection may not be 
that good. To improve the prediction power, our idea is to use 
the similar day's load as the input load. For comparison pur­
pose, the scatter plot of actual load of the forecasted day versus 
the similar day's load based on New England 2006 data is pre­
sented in Fig. 7 (also including both weekdays and weekends). 

It is clear that Fig. 7 exhibits a much better linear pattern than 
Fig. 6. Correlation coefficient associated with Fig. 7 is 0.95, 
much higher than that for Fig. 6, indicating that the similar day 
load has a much higher prediction power than the most recent 
load. 

The criteria to select similar days are based on ISO New Eng­
land' operation procedures [3] , and the selected day is required 
to have the same weekday index and similar weather to that 
of tomorrow. In this selection process, Tuesday, Wednesday, 
and Thursday are not differentiated following the rationale pre­
sented in Section II-A. To avoid seasonal variations, the selected 
day is also required to have its day-of-a-year index within a 
neighborhood of that of tomorrow. Let e denote the set of such 
historical days. Then the day with similar weather as tomorrow 
is selected by the following minimization process: 

24 

min L Iwf(t) - wi(t)l, where i E e (4) 
• t=l 

lCorrelation coefficient measures the association between the load of the day 
to be forecasted and the input load. The larger the association. the beller the 
input load is [18] . 
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Fig. 8. Wavelet decomposition. 

where the subscripts f and i, respectively, denote tomorrow 
(the forecasted day) and a historical day in 8; w represents the 
weather factor under consideration: wind-chill temperature Twc 
if tomorrow is a winter day, and humidex H if tomorrow is a 
summer day. For simplicity, Twc is considered if tomorrow is a 
spring or fall day. If there are multiple solutions for (4), the day 
closest to tomorrow is then selected. 

Despite ofthe high prediction power ofthe similar day's load, 
testing results (e.g., Example 3) show that prediction errors may 
be large if no other load is used. This is because the similar day's 
load does not have good information about the initial status of 
tomorrow ' s load, an important feature for the forecasting. To 
capture this feature, today' s predicted load at hour 24 (produced 
by SIWNN yesterday) is supplemented to the similar day load. 
Testing results show that with this supplemental load, prediction 
errors are significantly decreased. 

C. Decomposing Input Load 

Daubechies wavelets are good for load forecasting since they 
are orthogonal wavelets, and will not cause information loss in 
the frequency domain. In SIWNN, Daubechies 4 wavelet (Db4) 
is used to decompose the input load into a low frequency com­
ponent and a high frequency component. The decomposition is 
implemented by using a two-channel filter bank as depicted in 
Fig. 8. Application of other wavelets and multilevel decompo­
sition are beyond the scope of this paper.3 

For the low frequency channel in Fig. 8, L is the scaling func­
tion for Db4, and is basically a low-pass filter. It is used to filter 
out high frequency component from the selected similar day' s 
load, and the output of L contains low frequency information 
of the load only. Following the standard filter bank design [14], 
three signal processing steps are after L: down-sampling to re­
duce data volume by dropping odd indexed data points, up-sam­
pling to pad zeros to the down-sampled data so as to recover data 
length, and a low-pass filter Fl to remove distortion caused by 
up-sampling (removing replicas of the signal spectrum) [15]. 
Symmetrically for the high frequency channel, H is the wavelet 
function for Db4, and is basically a high-pass filter. It is used 
to filter out low frequency component from the similar day's 
load. The wavelet function H is then followed by three signal 
processing steps similar to those for the low frequency channel, 
including down-sampling, up-sampling, and a high-pass filter 
F2. The filters Fl and F2 are designed based on [14, Eq. (4.6)] 
for perfect data reconstruction, i.e., the similar day's load can be 

3Results on utilizing multilevel decomposition are reponed in our recent pa­
pers [10] and [II] to be presented at the PES 2009 General Meeting. 
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Fig. 9. (a) Wavelet decomposition results for New England load (August I , 
2006 and August 2,2006). (b) Original and low frequency load (hour 10 to 24, 
August 2, 2006). 

perfectly reconstructed from the decomposed low and high fre­
quency components. This property is important since there will 
be no load feature loss by using such a decomposition. This de­
composition is also applied to today' s predicted load at hour 24. 
The decomposed load is then used in combination with other in­
puts for the two neural networks in the next subsection. 

Computation in the above filtering steps requires the load 
temporally before and after the input load. In view of this, the 
entire historical load is decomposed in one shot, and the low 
and high frequency components for similar day's load are then 
identified from the decomposed results . To decompose today' s 
predicted load at hour 24, today's predicted load at hours 21 
to 23 is padded to its beginning, and today's predicted load at 
hours 1 to 3 is approximated as tomorrow's load at these hours 
and padded to its end.4 

To illustrate the low and high frequency load features , New 
England load for August 1 and 2, 2006 (peak load days for 
summer 2006) is decomposed. The original load, and the 
decomposed low and high frequency load components, are 
depicted in Fig. 9(a), and the original and low frequency 
for some hours are zoomed in Fig. 9(b). The low frequency 
component has a clear pattern consistent with the original load 
but is smoother, while the high frequency component is noisy. 
Furthermore, the magnitude of the high frequency component, 
ranging from -400 MW to 400 MW, is much smaller than that 
of the low frequency component (ranging from 14500 MW to 
29000 MW). 

4Db4 is a four-length wavelet, and operates on four adjacent load values each 
time. Therefore, three hours of load needs to be padded at each end of hour 24. 
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Fig. II. Scatter plot of actual high frequency load of the forecasted day versus 
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D. Neural Networks 

Two three-layer perceptron networks [16] are separately used 
for the low frequency component and the high frequency com­
ponent. 

For the low frequency network, inputs are selected based on 
our testing experience, and include weekday index, wind-chill 
temperature, humidex, wind speed, cloud cover, and low fre­
quency components of the input load (the similar day's load 
and today's predicted load at hour 24) as shown in Fig. 10.5 To 
improve network performance while providing the capabilities 
to forecast beyond (or below) the historical maximum (or min­
imum) load level, the input weather and load are normalized 
to values in (0.05, 0.95) by using the corresponding historical 
maximal (or minimal) values . Weekday index is coded by using 
a 7-length binary number, i.e., 1000000 for Monday, 0100000 
for Tuesday, Wednesday and Thursday (following the rational 
presented in Section II-A), 0000100 for Friday, 0000010 for Sat­
urday, and 0000001 for Sunday following [17] . 

For the high frequency network, the inputs are also selected 
based on testing experience, and include weekday index, wind­
chill temperature, humidex, wind speed, cloud cover, high fre­
quency components of the input load, and precipitation. The 
high frequency component of the similar day's load is a major 
input in view of its good correlation with tomorrow's high fre­
quency load as shown in Fig. 11. Precipitation is another impor­
tant input for this network since testing results (e.g., Example 
3) show that prediction errors are large for rainy days if it is not 
used. The overall structure for the high frequency network is 
presented in Fig. 12. 

The two networks are first trained by using historical actual 
data, with the similar day-based selection criteria presented in 
Section II-B applied to each day in the training period. For each 

5Wind-chill temperature and humidex are used throughout the year for ease 
of implementation. 
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Fig. 12. High frequency network. 

network, the training process terminates when the training error 
is less than or equal to a specified threshold. To avoid over-fit­
ting, for each network, its number of hidden neurons, input se­
lection, and threshold value for terminating training are deter­
mined based on extensive testing. Furthermore, the two net­
works are trained with several years' historical data. 

In the prediction phase, the two predictions generated by the 
two networks are added up to be tomorrow's forecasted load. 
The accuracy of the forecast can be evaluated when the actual 
values for tomorrow's load become available by using the stan­
dard measure mean absolute percentage errors (MAPE): 

1 24 /L(t) - L(t)/ 
MAPE = -- L L( ) x 100% (5) 

24 t=l t 

where L(t) and L(t) , respectively, denote the actual and pre­
dicted values for tomorrow's load. MAPE is good when L(t) 
[the denominator in (5)] is not close to zero. 

III. NUMERICAL TESTING RESULTS 

The above method has been implemented in C++ on a 
Pentium-IV 2.67-GHz personal computer. Three examples are 
presented below. Example 1 uses a classroom-type problem to 
examine the value of using wavelet decomposition. Example 
2 predicts New England 2006 load, demonstrates the values 
of wind-chill temperature, humidex, and weather prepro­
cessing presented in Section II-A, and examines sensitivity of 
prediction to weather forecasting errors. Example 3 predicts 
New England 2007 load, and examines the effects of using 
wavelet decomposition, similar day ' s load, and supplemental 
load (today's predicted load at hour 24) on prediction accu­
racy. Predicted weather used in Example 2 and 3 were from 
ISO-NE (provided by weather stations through subscriptions). 
In each testing case, our method SIWNN is used as the base 
method, and the method used for comparison is implemented 
by removing the tested feature from SIWNN. The standard 
NN method is implemented by using a single network with 
weekday index, weather, and load of day D-2 used as inputs. 

Example 1,' Consider the following signal: 

yet) = 20sin(t) + sin(lOt) 

which is composed of a low frequency component 20sin(t) and 
a high frequency component sin(lOt) . Five hundred noisy data 
sets (t, y(t» were randomly generated for training with 

yet) = yet) + c(t) 
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AlIR 
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Dec 

TABLE IV 
MAPE (%) FOR NEW ENGLAND 2006 LOAD 

USING SIWNN (CASE 4 IN EXAMPLE 2) 

MAPE(MI) MAPE(M2) 
MAPE(M2)-
MAPE(Ml) 

1.60 1.65 0.05 
1.43 1.48 0.05 
1.47 1.52 0.05 
1.26 1.32 0.06 
1.61 1.66 0.05 
1.79 1.83 0.04 
2.70 3.24 0.54 
2.62 2.67 0.05 
1.48 1.52 0.04 
1.38 1.43 0.05 
1.39 1.44 0.05 
1.75 1.81 0.06 

Ml: SIWNN with actual weather; M2: SIWNN with predicted weather 

Jan 
Feb 

March 
April 
May 
June 

JulL 
Aug 
Sept 
Oct 
Nov 
Dec 

TABLE V 
MAPE (%) FOR NEW ENGLAND 2006 LOAD USING 
THE STANDARD NN METHOD (CASE 4 IN EXAMPLE 2) 

MAPE(M3) MAPE(M4) 
MAPE(M4)-
MAPE(M3) 

2.01 2.12 0.11 
1.5 1.66 0.16 

1.55 1.66 0.11 
1.51 1.59 0.08 
1.69 1.76 0.07 
2.3 2.42 0.12 
3.72 3.86 0.14 
3.33 3.48 0.15 
1.6 1.66 0.06 

1.52 1.58 0.06 
1.73 1.83 0.10 
1.91 2.03 0.12 

M3: The standard NN with actual weather; M4: The standard NN with 

predicted weather 

neural network without wavelet decomposition. For the fair 
comparison, the similar day load and supplemental load are 
used in both methods. Case 2 shows the effectiveness of our 
idea to predict high frequency load. Case 3 shows the benefits 
of using similar day's load as compared to the standard practice 
of using the most recently available load. Case 4 then demon­
strates the importance of using the supplemental load. In all 
the cases, training period is from 2003 to 2006, and prediction 
period is 2007. 

Case 1: SIWNN and a single network without wavelet de­
composition are compared. MAPEs for both methods are pre­
sented in Table VI. It can be seen that wavelet decomposition 
improves prediction accuracy. This is consistent with the con­
clusion made in Example 1. 

Case 2: Prediction of high frequency load is examined with 
accuracy measured by MAE (following the rationale presented 
in footnote 6). The results presented in Table VII are good con­
sidering the noisy nature of high frequency load. The actual 
and predicted high frequency load are plotted in Fig. 14 for two 
winter peak load days (February 7 and 8, 2007), and in Fig. 15 
for two summer peak load days (July 10 and II, 2007). It can 
be seen that predictions follow the trend of the actual well. 
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TABLE VI 
VALUE OF WAVELET DECOMPOsmON MAPE (%) 

FOR 2007 NEW ENGLAND LOAD 

MAPE (Single 
SingleNN SIWNN NN} - MAPE 

(SIWNN) 
Jan 1.79 1.59 0.2 
Feb 1.44 1.3 0.14 

March 1.41 1.37 0.04 
April 1.45 1.27 0.18 
Mav 1.35 1.33 0.02 
June 2.53 2.22 0.31 
July 2.34 2.07 0.27 
Aug 2.27 1.98 0.29 
Sept 2.16 2.12 0.04 
Oct 1.31 1.24 0.07 
Nov 1.65 1.45 0.2 
Dec 18 1.68 0.12 

TABLE VII 
ACCURACY (MAEs) OF HIGH FREQUENCY LOAD (NEW ENGLAND 2007 DATA) 

Jan 
Feb 

March 
April 
May_ 
June 

600 

400 

200 

~ 0 

-200 

-400 

MAE(MW) MAE(MW) 
44.81 July 48.14 
48.19 Aug 52.99 
55.99 S~ 60.56 
55 .72 Oct 47.35 
48.25 Nov 49.47 
55.38 Dec 50.52 

13 19 31 31 

Hour 

I-+- Actual -+- Predi:ted I 
Fig. 14. Actual and predicted high frequency load (winter peak load days : Feb­
ruary 7 and 8, 2007). 

400 ---------------------------

200 

~ 0 

11 21 31 41 

Hour 

1--Actual-- Predicted I 
Fig. 15. Actual and predicted high frequency load (summer peak load days: 
July 10 and 11, 2007). 

To examine the value of precipitation, the high frequency net­
work is tested with and without precipitation. The actual and 
predicted high frequency load for two rainy days (April 15 and 
16, 2007) are plotted in Fig. 16. The prediction obtained by 
using precipitation is clearly better than the other, demonstrating 
the value of precipitation_ 

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on January 26,2010 at 22:14 from IEEE Xplore. Restrictions apply. 



CHEN e/ ill. : SHORT-TERM LOAD FORECASTING: SIMILAR DAY-BASED WAVELET NEURAL NETWORKS 329 

800 ------------- - -- - --- - -----

500 --------

II 21 3 1 41 

Hour 

--Actual --- Prediction I ......... Prediction 2 I 
Prediction 1: Prediction with using precipitation; Prediction 2: Predicti.on 
without using precipitation 

Fig. 16. Actual and predicted high frequency load (rainy days: April 15 and 
16,20(7). 

Prediction 1: Prediction with using precipitation; Prediction 2: Prediction 

without using precipitation 

Jan 
Feb 

March 
April 
May 
June 
July 
Aug 
Sept 
Oct 
Nov 
Dec 

TABLE VIII 
VALUE OF USING THE SIMILAR DAY'S LOAD 

MAPE (%) FOR NEW ENGLAND 2007 LOAD 

MI M2 
MAPE(MI)-
MAPIUMl) 

1.93 1.59 0.34 
1.36 1.3 0.06 
1.43 1.37 0.06 
1.42 1.27 0.15 
1.36 1.33 0.03 
2.75 2.22 0.53 
2.6 2.07 0.53 

2.77 1.98 0.79 
2.18 2.12 0.06 
1.27 1.24 0.03 
1.78 1.45 0.33 
1.82 1.68 0.14 

Ml : Using load of day D-2; M2: Using similar day' s load 

Jan 
Feb 

March 
April 
May 
June 
July 
Aug 
Sept 
Oct 
Nov 
Dec 

TABLE IX 
VALUE OF THE SUPPLEMENTAL LOAD MAPE (%) 

FOR NEW ENGLAND 2007 LOAD 

MI M2 
MAPE(MI)-M 

APE(M2) 
4.79 1.59 3.20 
4.16 1.30 2.86 
4.41 1.37 3.04 
3.79 1.27 2 .52 
4.37 1.33 3.04 
5.76 2.22 3.54 
5.89 2.07 3.82 
5.12 1.98 3.14 
4.57 2.12 2.45 
4.68 1.24 3.44 
3.18 1.45 1.73 
4.92 1.68 3.24 

Ml: Without using supplemental load; M2: Using supplemental load 

Case 3: This case compares using the similar day's load 
versus the standard practice of using the most recent load (load 
of day D-2). MAPEs presented in Table VIII show that using 
the similar day's load improves prediction accuracy. 

Case 4: SIWNN is used with and without the supplemental 
load to examine its value. MAPEs presented in Table IX show 
that this load is important and significantly improves prediction 
quality. 

IV. CONCLUSION 

This paper presents a generic framework that combines sim­
ilar day selection, wavelet decomposition, and neural networks 
to forecast tomorrow's load. The key idea is to use similar day's 
load supplemented by today' s predicted load at hour 24 as input 
load, and use a synergistic combination of wavelet decomposi­
tion and neural networks to capture key features of load at low 
and high frequencies. Testing results show that this method pro­
vides accurate predictions. This method has been extended for 
holiday load forecasting, and very short-term load forecasting 
with very good results. 
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