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Hybrid Kalman Filters for Very Short-Term Load 
Forecasting and Prediction Interval Estimation 
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Abstract-Very short-term load forecasting predicts the loads 
in electric power system one hour into the future in 5-min steps 
in a moving window manner. To quantify forecasting accuracy in 
real-time, the prediction interval estimates should also be produced 
online. Effective predictions with good prediction intervals are im
portant for resource dispatch and area generation control, and 
help power market participants make prudent decisions. We pre
viously presented a two level wavelet neural network method based 
on back propagation without estimating prediction intervals. This 
paper extends the previous work by using hybrid Kalman filters 
to produce forecasting with prediction interval estimates online. 
Based on data analysis, a neural network trained by an extended 
Kalman filter is used for the low-low frequency component to cap
ture the near-linear relationship between the input load component 
and the output measurement, while neural networks trained by un
scented Kalman filters are used for low-high and high frequency 
components to capture their nonlinear relationships. The overall 
variance estimate is then derived and evaluated for prediction in
terval estimation. Testing results demonstrate the effectiveness of 
hybrid Kalman filters for capturing different features ofload com
ponents, and the accuracy of the overall variance estimate derived 
based on a data set from ISO New England. 

Index Terms-Extended Kalman filter, prediction interval esti
mation, unscented Kalman filter, very short-term load forecasting, 
wavelet neural networks. 

I. INTRODUCTION 

V ERY short-term load forecasting (VSTLF) predicts the 
loads in electric power system one or several hours into 

the future in steps of a few minutes (e.g., 5-min) in a moving 
window manner. To quantify forecasting accuracy in real-time, 
the forecasting process should also estimate prediction inter
vals (PI) online. Accurate VSTLF with good Pis is important 
for resource dispatch and area generation control, and helps 
power market participants make prudent decisions. Based on 
data analysis, load series have multiple frequency components, 
and each may have its unique pattern, such as monthly, weekly, 
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and hourly patterns. Effective VSTLF, however, is difficult in 
view of different characteristics of load components and the ac
curate derivation for online PI estimates. 

Methods for VSTLF have been reviewed in our recent 
paper [l], including persistence [2], extrapolation [3]-[6], 
time series [7]-[11], Kalman filters [12], [13], fuzzy logic [7], 
[14]-[16], and neural networks (NN) [7], [17], [18]. Among 
these methods, NNs have been widely used. A standard NN 
trained by back propagation was used for VSTLF in [7]. To 
make data stationary, the load inputs to an NN were transformed 
by using a relative increment transformation in [18]. A single 
NN, however, may not be able to accurately capture compli
cated loa_d features. This is because the load series has multiple 
frequency components, and each may have its unique pattern. 
To quantify VSTLF accuracy, the PI estimates should also be 
produced online. Since very few of these VSTLF methods have 
the capability of providing PI estimates online, methods of gen
eral prediction(s) with PI(s) will be reviewed in Section II-A, 
including maximum likelihood, distribution assumptive model, 
resampling, Bayesian inference, and Kalman filters. 

Recently, we have developed a VSTLF method using 
wavelet neural networks (WNN) with data pre-filtering in [1]. 
This method will be briefly reviewed in Section 11-B. The key 
idea was to use a wavelet technique to decompose filtered 
loads into three orthogonal components at different frequen
cies: low-low (LL), low-high (LH), and high (H) frequency 
components. All three NNs were applied to forecast individual 
components, and NNs' outputs were then combined to form 
forecasts. To perform the VSTLF in a moving manner, twelve 
dedicated .WNNs were used to form the moving forecast. 
Since WNNs were trained by back propagation, the dynamic 
covariance cannot be produced for PI estimation. To quantify 
forecasting accuracy, a general resampling method was used for 
PI estimates [l]. The resampling, however, may not be accurate 
enough to estimate Pis due to the use of the back propagation 
algorithm for training NNs' weights. To capture complicated 
load features with accurate Pis, the WNN method needs to be 
extended, and Pis need to be further derived. 

In this paper, our previous method of wavelet neural net
works trained by back propagation [1] is further improved. By 
replacing the first-order back propagation algorithm with the 
second-order Kalman-type algorithms, a dynamic covariance 
can be produced for Pl estimates. A method of wavelet neural 
networks trained by hybrid Kalman filters (WNNHKF) is devel
oped. It forecasts loads one hour into the future in 5-min steps 
in a moving window manner with associated PI estimates in 
real-time. The data analysis shows that the LL frequency com
ponent has a near-linear relationship between the LL load input 
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and output measurement, whereas the LH and H frequency com-· 
ponents have nonlinear relations. To capture the near-linear rela
tionship between the LL input and output measurement, the ex
tended Kalman filter is used to train a neural network (EKFNN) 
because the EKF is derived through linearizing a system and is 
good for the near-linear system. To capture highly nonlinear re
lationships for LH and H components, the unscented Kalman 
filter is used to train neural networks (UKFNN) because the 
UKF is good for highly nonlinear systems. Hybrid Kalman fil
ters details will be presented in Section III. 

Prediction intervals for VSTLF are estimated and then evalu
ated in Section IV. To accurately estimate online Pis, the overall 
variance estimate is calculated by adding up three orthogonal 
variance estimates from H, LH, and LL frequency NNs. The es
timates for Hand LH components are directly obtained. The es
timate for LL component is further derived because the relative 
increment, a nonlinear transformation, is applied to the LL com
ponent. This relative increment is used to make the LL series 
stationary so that the transformed series can be easily captured 
by the NN. To assess the Pis, the distribution of the forecasting 
errors is analyzed, and then Pis are thoroughly evaluated. 

In Section V, our model is configured by training, validation, 
and test processes in a three-way data split, as presented in [19, 
Ch. 2]. Example 1 uses a classroom-type problem to compare 
our WNNHKF to the methods of persistence, linear AR, single 
NN, and WNN so that our method can be verified in a simple 
way. Based on a data set from ISO New England (ISO-NE), Ex
ample 2 shows the values ofEKFNN for the near-linear LL fre
quency component and UKFNNs for highly nonlinear LH and 
H frequency components. This example also demonstrates the 
accuracy of standard deviations derived for PI estimates. It is 
difficult to compare this method to others since the implemen
tation details for other methods are not open, and there is no 
standard test data set. Nevertheless, it is clear that Kalman fil
ters provide as a by-product dynamic covariance matrix for PI 
estimates, which, based on testing, are consistent with those cal
culated based on static historical errors. 

A preliminary version of this paper was presented in [20] 
where a WNN trained by hybrid Kalman filters was established 
for VSTLF, and standard deviations from Kalman filters were 
derived for PI estimates. Based on the preliminary results, the 
relationships between input and output measurement for indi
vidual load components are thoroughly analyzed. The consis
tency of the dynamic innovation covariance to the static covari
ance for Kalman filters is discussed. Forecasting errors are fur
ther investigated, and Pis are then thoroughly evaluated. The 
results of other forecasting methods are added as the reference 
to be outperformed. For our method, model parameters are se
lected and justified based on a three-way data split, as presented 
in [19, Ch. 2]. 

II. LITERATURE REVIEW 

A. Prediction Interval Estimation 

Existing VSTLF methods have been reviewed in [1]. Since 
very few of these methods have the capability of producing the 
accurate PI estimate(s), methods of the general prediction(s) 
with Pl(s) construction are reviewed in this paper. These 

methods mainly include the maximum likelihood method, the 
distribution assumptive model, the resampling method, the 
Bayesian approach, and Kalman-type filters. 

The maximum likelihood algorithm is used to obtain a set of 
NN weights by minimizing an error function. As presented in 
[21 ], a traditional NN was extended with a new set of hidden 
neurons used for computing a variance for data noises. Based 
on this variance, the PI was constructed. 

The distribution assumptive model assumes a certain distri
bution for loads or forecasting errors. A probabilistic load model 
in [22] and [23] a.ssumed that load data had a multivariable prob
ability density function, and predictions with variance estimates 
were obtained from the conditional distribution of the load given 
the weather information. A normal distribution for errors was 
assumed in [24], and the Pl was constructed by multi-linear re
gression adapted to NNs. The method was further developed in 
[25] to consider effects of noisy data. 

The resampling method derives the Pl(s) by using subsets of 
available data (e.g., the load or the wind generation) or drawing 
sample errors randomly with replacement from a set of fore
casting errors. Assuming that error samples are independent and 
identically distributed, the PI was estimated from a cumulative 
distribution function using ordered sample errors in [21]. An 
adapted resampling method was presented to provide prediction 
intervals for wind power generation in [26]. The method relied 
on a classification of recent forecast errors, a fuzzy inference 
model, and a multisampling resampling scheme for combining 
probability distributions. A modified bootstrap method was de
veloped in [27] to estimate the distribution of short-term load 
forecasting. Based on this, Pis were obtained. 

The Bayesian approach for an NN starts with a prior distribu
tion of the NN's weights, and then optimized weights are deter
mined by maximizing the posterior distribution based on histor
ical data. Through Taylor series expansion, the prediction dis
tribution conditioned on a new input and weights was derived 
and approximated as a Gaussian distribution [28], [29]. Markov 
Chain Monte Carlo methods were used to calculate a covari
ance for PI estimate in [28]. To improve computation efficiency, 
Quasi-Newton methods were applied, as presented in [29]. 

Kalman-type filters have been applied to NNs with PI esti
mates. Standard NNs are based on back propagation, which is a 
first-order gradient method and cannot produce a dynamic co
variance for PI estimates. Therefore, the EKF was used to train 
and update a feed-forward NN by treating the NN's weights as 
a state vector [30]. To improve computation efficiency, the EKF 
was extended to the decoupled EKF by ignoring the interdepen
dence of mutually exclusive groups of weights in [31].The nu
merical stability and accuracy of the decoupled EKF were fur
ther improved by U-D factorization in [32] for short-term load 
price forecasting. 

Among all the methods described above, NNs have been 
widely used, and they provide valuable information for PI 
estimate(s). However, few papers have presented effective and 
efficient ways to produce accurate online Pis for VSTLF. 

B. Wavelet Neural Networks 

Recently, we have developed a method of wavelet neural net
works with spike pre-filtering for VSTLF [1]. The schematic of 
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Date and Time Indices 

Fig. 1. Schematic of the wavelet neural networks (WNN). 

WNN is highlighted in Fig. 1. The key idea for WNN was to 
use a wavelet technique to decompose the pre-filtered load data 
into three orthogonal components at different frequencies: LL, 
LH, and H components. The relative increment transformation 
in [18] was applied to the LL component to make the series sta
tionary. The date and time indices were used to help NNs iden
tify the periodical patterns ofload data. Separate NNs were then 
used to predict individual components, and results ofNNs were 
combined to form forecasts. However, it should also estimate 
Pis in order to quantify the forecasting accuracy in real-time. 
Since the WNN trained by back propagation cannot produce a 
dynamic covariance for PI estimates, the WNN method needs 
to be further improved. 

Ill. WAVELET NEURAL NETWORKS TRAINED 

BY HYBRID KALMAN FILTERS 

In WNN described in Section 11-B, load data have compli
cated features. To accurately categorize them, individual com
ponents are thoroughly analyzed. A linear autoregressive (AR) 
model (with a constant term added) and a standard nonlinear 
NN are separately used to investigate the relationship between 
the input load and the output measurement. Following [l], last 
hour's loads (12 points) are used as inputs to both models. To 
perform a time series of forecasts (12 points) by using AR, the 
input data are time-shifted. For example, data from l(t - 11) to 
l(t) are used to forecast l(t + 1). Next, data from l(t - 10) to 
l ( t) p !us the prediction of l ( t + 1) are used together to forecast 
l(t + 2), and the process repeated until a prediction is made for 
l(t + 12). 

To analyze individual components, take 60-min-ahead fore
casting results for example. For LL component, the coefficient 
of determination value is 0.97 for AR, indicating a linear map
ping for LL. To explore further, the scatter plot in Fig. 2(a) 
shows a nonlinear pattern between the prediction (x) and the 
residual (y) generated by the AR model, whereas the scatter 
plot in Fig. 2( d) does not show a clear nonlinear pattern by 
the NN. This indicates that the AR is incapable of capturing 
the residual nonlinearity, while the NN is capable of capturing 
both linearity and nonlinearity. It can thus be concluded that the 
LL component has a near-linear relationship between input and 
output measurement. A similar analysis is conducted on the LH 
component. The coefficient of determination value is 0.08 for 
AR. Moreover, Fig. 2(b) shows predictions from AR are con
centrated around zero, whereas Fig. 2(e) shows a complex pat
tern in predictions by the NN. The above indicates a highly non
linear mapping for the LH component. Similar to LH, the same 
conclusion is made on the H component from the coefficient 
of determination value as well as Fig. 2(c) and (f). Both AR 
and NN methods are also used for analyzing 5- to 55-min-ahead 
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Fig. 2. Scatter plots of 60-min-ahead predictions and residuals for individual 
LL, LH, and H load components (based on 1000 pair data for individual plots). 

Date and Time Indices 

Fig. 3. Schematic of wavelet neural networks trained by hybrid Kalman filters 
(WNNHKF). 

forecasting results. The result analysis again indicates that the 
LL component has the near-linear relationship between input 
and output measurement, whereas LH and H components sepa
rately have highly nonlinear relationships. 

To forecast near-linear and highly nonlinear relationships for 
individual load components with accurate online PI estimates, 
the back propagation algorithm is replaced by Kalman-type 
filters for training WNN's weights. Generally, the back prop
agation is a first-order steepest decent method, whereas the 
Kalman filter is a second-order Newton method for recursive 
state estimation of linear dynamic systems, and is a minimum 
mean-square-error estimator. Through treating NN's weights 
as a slowly varying state and the (scaled) loads as the mea
surement, Kalman-type algorithms are adopted because they 
can produce a dynamic innovation covariance whose diagonal 
elements can be used for PI estimates. As shown in Fig. 3, 
the schematic of wavelet neural networks trained by hybrid 
Kalman filters is presented. To capture the near-linear relation
ship between the LL input and output measurement for an NN, 
an extended Kalman filter is used to train the neural network 
(EKFNN) in Section III-A, because EKF is derived through 
linearizing the system and is good for near-linear systems. To 
capture the highly nonlinear relationships for individual LH 
and H components, an unscented Kalman filter is used to train 
the neural network (UKFNN) in Section III-B, because UKF is 
good for highly nonlinear systems. Finally, results from these 
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three NNs are added up to form forecasts. The overall variance 
will be derived and evaluated for PI estimates in Section IV. 

A. EKFNN for the Low-Low Load Component 

The key idea for forecasting the LL component is to use the 
EKFNN. The EKF trains the NNLL by treating its weight w(t) 
as a slowly varying state and the (scaled) load input as the mea
surement z(t) following [30]-[32]. Training an NN can be de
scribed as a state estimation problem with state and measure
ment equations (the symbol LL is dropped in following equa
tions for convenience): 

w(t + 1) = w(t) + r:(t) (1) 

z(t) = h(u(t),w(t)) + v(t) (2) 

where w(t) is an nw x 1 weight vector trained by using a set 
of input-output measurement pairs of an NN {u(t), z(t), t = 
1, ... , T}, the u(t) is an nu x 1 input vector including loads of 
the last hour as well as the date and time indices following [1], 
the z(t) is a corresponding nz x 1 load measurement vector (nz 
is equal to 12 indicates 5- to 60-min-ahead predictions), the vari
able T represents a forecasting horizon, and the h( · ) represents 
an input-output function of an NN. Following the standard as
sumption for EKF, the nw x 1 process noise r:( t) is assumed to be 
zero-mean white Gaussian with a positive covariance Q(t), and 
the nz x 1 measurement noise v(t) is assumed to be zero-mean 
white Gaussian with a positive covariance R(t). 

In EKF, the state and covariance propagations are im
plemented in time-update equations. After linearizing the 
underlying nonlinear system, the Bayesian rule is then im
plemented in measurement-update equations. Following the 
procedure of [33, pp. 200-210 and 382-385], key EKF steps 
are presented for completeness. The time-update equations are 
as follows: 

w(t + 1It+1), and the state covariance P(t + 1It+1). The 
measurement-update equations are as follows: 

K(t + 1) = P(t + 1 It) · H(t + l)T · S(t + 1)-1 (7) 

w(t + 11t+1) = ·w(t + 11 t) + K(t + 1) . (z(t + 1) 

-z(t+llt)) (8) 

P(t + 1It+1) = P(t + 1 It) - K(t + 1) · S(t + 1) 

. K(t + l)T (9) 

S(t + 1) = H(t + 1) · P(t + 1 It)· H(t + l)T 

+ R(t + 1) (10) 

where S(t+ 1) is an nz x nz innovation covariance (the covari
ance of the load measurement) and treated as the SLL(t+ 1), to 
be used to derive Pis in Section IV-A. 

The dynamic innovation covariance S is generally consis
tent with the covariance calculated based on the static histor
ical errors. This is because the state covariance P converges to 
a steady-state covariance under the conditions of controllability 
and observability as presented in [33, pp. 211-212]. To justify 
these two conditions, take EKF as an example. The state transi
tion matrix in (3) is an identity matrix, the process noise covari
ance Qin (4) is positive, and the measurement matrix Hin (6) 
is believed to have a full rank given sufficient measurements. 
Therefore, it can be shown that the pair of state transition ma
trix and Cholesky factor of Q is completely controllable, and the 
pair of state transition matrix and H is completely observable. 
This yields the steady-state P and K, indicating that S is consis
tent with the static covariance. To demonstrate this, testing re
sults in Example 2 of Section V show that the estimated standard 
deviation (derived from S) is close to the standard deviations of 
the sample errors. One advantage for PI estimates is that EKF 
can easily provide, as a by-product, an S for PI estimation. The 
second is that S is dynamic. Through linearizing the nonlinear 
system, the most recent error can be used to calculate S. 

w(t + 11 t) = ·w(t It) 
P(t + 11 t) = P(t It)+ Q(t) 

Using the EKF described above, the NN will be trained offiine 
(3) based on a set of input-output measurement pair data and then 
( 4) trained online (updated) when a new measurement is available. 

The EKF flowchart can be found in [33, p. 386]. For EKFNN, 
(5) its load input and output are described below. z(t + 11 t) = h(w(t + 11 t), u(t)) 

where the prior state (weight vector) w(t It) and state covari
ance P(t It) are propagated to ·w(t + 1 It) and P(t + 1 It), re
spectively. Here, the state transition matrix for the weight vector 
is an identity matrix. Next, the estimated weight ·w(t + 1 It) to
gether with the input u( t) are used to generate the prediction 
z(t + 1 It) which is treated as the ZLL(t + 1 It) for the LL 
component. Since the function h( · ) is nonlinear, the Taylor se
ries expansion is used to linearize the nonlinear system, and the 
H(t + 1) is calculated: 

H(t+l) = (8h(u,w)/8w), givenu=u(t)&w 
=·w(t+llt). (6) 

Based on the Bayesian rule, the obtained function H(t + 1) 
is then used to produce the gain K ( t + 1), the posterior weight 

Following our previous WNN method in [1], the input LL 
component is transformed by using the relative increment trans
formation which is used to make the LL series stationary: 

(11) 

where lt represents an LL load component at the time t, RI rep
resents the relative increment transformation, and the wr is an 
element of load input vector lnr(t) = {l~n.+l • ... , l[ll}. To 
satisfy NN's input requirement, lnr(t) has to be normalized: 

(12) 

where 'ULL(t) represents the normalized LL load input part at 
time t, and lR}n and lRjx are the minimum and maximum values 
of the relative increment in LL load, respectively. 
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After preparing NN inputs, the EKFNN performs forecasting. 
The forecasting output ZLL(t + 1 It) has to be de-normalized: 

zd'(t + 1 It)= i£L(t + 1 It)· (lRI - lR.t) + lR.t (13) 

where zd(t + 1 It) is a de-normalized output vector and has to 
be inverse-transformed with respect to the relative increment 
transformation in an element-wise manner. For convenience, 
the conditioned variable tin zd(t + 1 It) is dropped for all the 
. d" "d l l . { -d -d } m 1v1 ua e ements m Zt+l • ... , Zt+n, : 

" " " T 
where L(t + 1 It) = {lt+i. ... , lt+n,} is the LL load predic-
tion. 

B, UKFNN for the Low-High and High Load Components 

When the relationship between input and output measure
ment for an NN is highly nonlinear, EKF performance could be 
poor because the mean and covariance are propagated by lin
earizing an underlying nonlinear model. The key idea for fore
casting LH and H frequency components is to use the UKFNN. 
The UKF uses an unscented transform to generate a minimal 
set of sample points, called sigma points, around the mean. 
These sigma points are then propagated through nonlinear func
tions. The mean and covariance of estimates are then recovered 
through weighting. Because the set of sigma points are sym
metrically selected, the odd central moments are zero. If the 
distribution for the state is multiple dimensional Gaussian, the 
first three moments are the same as the original moments [34]. 
Therefore, UKF predicts the mean more accurately than EKF, 
and it predicts the covariance at least as accurately as EKF. It 
also avoids the need to calculate the Jacobian functions. 

Similar to the EKF described in Section III-A, the UKF also 
adopts the time-update and measurement-update equations. 
Rather than using the Taylor series expansion to calculate the H 
matrix ofEKF, a set of sigma points are generated, propagated 
through the function, and then weighted to produce predictions 
with variance estimates. Following the procedure of [34], 
key steps of UKF are presented below for completeness. The 
time-update equations are the same as (3)-(4), where the prior 
state (weight vector) w(t It) and covariance P(t + 1 It) are 
propagated to ·w(t + 1 It) arid P(t + 1 It), respectively. The 
propagations are then performed to generate a set of 2nw + 1 
sigma points x: 

xo(t + 11 t) = ·w(t + 11 t) 
Xi(t + 1 It) = w(t + 1 It) 

+ ( y~( n_w_+_,\_)_· -P-( t_+_l_l_t).) i , i = 1, ... , nw 

Xi(t + 1 It) = w(t + 1 It) 

- ( yl(nw + ,\) · P(t + 1 lt))i-nw 

i = nw + 1, ... , 2nw (15) 

--------:-:::..,_--:-:-::-------------------:-
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where nw is the number ofNN weights,,\ is a scaling parameter, 
and ( yl(nw + ,\) · P(t + 1 I t))·i is the ith column of the square 
root of the matrix ( nw + ,\) · P ( t + 1 I t). Through the nonlinear 
function h( ·),the x points are projected to 'Y points which are 
then weighted to produce the NN output: 

'Yi(t + 1) = h(Xi(t + 1 It), u(t)), i = 0, ... , 2nw (16) 
2N 

z(t + 11 t) = 2: wi . 'Y·i(t + 1) (17) 
i=O 

where W; is the weight for the ·ith 'Y point, and its definition and 
default value can be found in [35, (15)], and z(t + 1 It) is the 
UKFNN's prediction which is treated as ZH(t + 1 It) for the H 
component, and ZLH(t + 1 It) for LH. 

Similar to the steps for EKF, the UKFNN prediction 
z(t + 1 It) together with x and 'Y points are used to calculate 
the posterior weight state and covariance based on the Bayesian 
rule. The measurement-update equations are as follows: 

{
2nw 

K(t + 1) = ~ wi. [xi(t + 11 t) - ·w(t + 11 t)J 

· b·i(t + 1) - z(t + 1 It)]}· S(t + 1)-1 (18) 
2nw 

S(t + 1) = L wi. ['Yi(t + 1) - z(t + 11 t)J 
i=O 

· bi(t + 1) - z(t + 1 It)]+ R(t + 1) (19) 

where the posteriorweightw(t + 1It+1) and the state covari
ance P(t + 1It+1) are as same as (8)-(9). The nz x nz inno
vation covariance S ( t + 1) is treated as the SH ( t + 1) for the H 
component, and S LH ( t + 1) for the LH component. They will 
be used for PI estimates in Section IV-A. 

Following our WNN method in [1], the H input is normalized 
without applying the relative increment transformation: 

UH(t) = (hH(t) - h'f[in)/((h'Jiax - h'f[in)) (20) 

where uH(t) is the normalized load component input part at 
time t, hH(t) represents the H load component at time t, and 
h'flin and h'flax are the minimum and maximum values of the H 
component series, respectively. 

After input preparation, UKFNN performs the prediction 
which has to be de-normalized: 

hH(t + 1) = ZH(t + 1 It)• (h'Jtx - hHin) + hHin. (21) 

Similar to the H component, the prediction hLH(t + 1) can be 
obtained for the LH component. 

IV. PREDICTION INTERVAL ESTIMATION AND EVALUATION 

To estimate prediction intervals online for VSTLF, the overall 
variance estimate is derived in Section IV-A. As shown in Fig. 4, 
the key idea is to use an overall variance estimate obtained by 
adding up three estimates from EKFNNLL. UKFNNLH. and 
UKFNNH. This is because these components are orthogonal 
based on the wavelet theory. To obtain individual variance es
timates, the diagonal elements of the innovation covariance for 
H, LH, and LL components should be de-normalized individ
ually. The de-normalized estimate for LL is further approxi
mated due to the relative increment transformation. To assess 
the PI estimates, In Section IV-B, the Kolmogorov-Smirmov 
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Nonnalized LH 

VE: Variance Estimation; RI: Relative Increment 

Fig. 4. Schematic of the prediction interval estimation. 

test and Quantile-Quantile plot show that the forecasting errors 
have heavier tails than a Gaussian distribution. Based on this, 
the estimated Pis are thoroughly evaluated. 

A. Prediction Interval Estimation 

To obtain an overall variance estimate, three variance esti
mates derived from individual NNs are added together: 

(22) 

where 0-2 ( t + 1) is the overall variance estimate used for online 
Pl estimates, and a'ir(t + 1), aLH(t + 1), and a'fL(t + 1) are 
the individual variance estimates calculated based on SH(t + 
1), SLH(t + 1), and SLL(t + 1), respectively. To obtain the 
variance estimates for Hand LH components, diagonal elements 
of SH(t + 1) and SLH(t + 1) should be de-normalized: 

aJr(t + l) = (h'Jlax - h'Jlin). 2 • diag(SH(t + 1)) 

a'fH(t + 1) = (h'fjt - h'f}f )2 . diag(SLH(t + 1)). (23) 

Similarly, the diagonal ones of S LL ( t + 1) are de-normalized: 

af},(t + 1) = (lR;x - lR}n) · diag(SLL(t + 1)) (24) 

where af},(t + 1) is a de-normalized variance estimate with el
ements { af~ 1 , ••. , af~nz}. For convenience, the symbol LL is 
omitted for individual elements here as well as in the following 
equations. This de-normalized variance estimate then has to be 
further processed because the relative increment transforma
tion is applied to the LL load input. Since the transformation. is 
nonlinear, the derivation is difficult in view of the complicated 
cross-correlations for individual elements of zd(t + 1 It). 

The key idea for deriving the LL variance is to ignore the 
cross-correlations. This is because numerical testing shows that 
cross-correlations of the dependent elements { zf+ 1 , ••• , zf+nz} 
in the vector zd(t + 1 It) have values at 10-8 , whereas indi
vidual variances have values at 10-6 • The variance estimate is 
then approximated in an element-wise manner. Following (14a), 
the estimate a-;+1 for lt+1 is derived: 

a;+l = Var [ (zt+l + 1) · lt] = CTf!1 · z;. (25) 

Following (14b), the lt+2 is calculated based on lt+l· By 
omitting their covariance, the estimate a-;+2 is approximated: 

a-;+2 =Var [(zf+i + 1) · (zf+2 +1) · lt] 
:::::: [Var (zf+i) +Var (zf+2 ) +Var (zf+i · zf+2)]. z;. 

(26) 

In the equation above, the numerical testing shows that ele
ments 4~1 and CTf~2 have values at 10-4 and 10-6 , respec
tively. Since the term CTf~ 1 • CTf~2 is relatively small, it is ig
nored. The estimate is further approximated: 

In the second equality above, zf+i = E[zf+l] and #+2 = 
E[zf+2l are based on [33, p. 203]: 

(28) 

where zd(t+llt) has elements {zf.i-1,zt+2·····Zf+nJ, 
zd(t + 11 zt) has elements {zf+l, 4+2• ... , zf+nJ, and zt 
represents the past observations up to t. This is because under 
the Markov assumption, the predicted measurement given the 
immediately previous one is conditionally independent of the 
other earlier measurements. 

To estimate other variances, i.e., a-;+3 , .•• , a;+nw, the 
process will be repeated until the last element is calculated. 
Finally, a general equation is obtained: 

A 2 ~ { (1 ~ Ad2 Ad2 ) d2 } z2 CTt+J :::::: {.-t + {.-t Zt+i - zt+j • CTt+j • t 
J=l i=l 

~ t, { ( 1+ t. ( (1it= - !\tr') . ii,+; + !1i}")' 

( (lmax zmin) A + zmin) 2) (zmax zmin) 2 - RI - RI • Zt+j RI ' RI - RI 

·d;ag (SLL(t + 1) l.+;} .1;, J ~ 1, ... , n, (29) 

where aiL ( t + 1) = { a;+l, · • • , a;+n, } T is an approximated 
variance estimate vector for LL load component. 

B. Evaluation of Prediction Interval Estimates 

To help evaluate PI estimates, the distribution of forecasting 
errors for individual 5- to 60-min outs is analyzed. The Kol
mogorov-Smirmov test and Quantile-Quantile plot of the errors 
show that the errors have heavier tails than a Gaussian distribu
tion. However, the Kolmogorov-Smirmov test shows that after 
removing the bottom and top tails of the errors (e.g., 5-min er
rors that are either below the 0.7th percentile or above the 99.3th 
percentile), the remaining errors follow a zero mean Gaussian 
distribution. This test is p~rformed in two ways. First, the re
maining errors are standardized without centering, and the em
pirical distribution of the resulting val?es is compared with a 
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standard Gaussian distribution. Second, the empirical distribu
tion of the remaining errors is compared with that of simulated 
data sampled from a Gaussian distribution with zero mean and 
the same standard deviation. Numerical details and results of 
these two ways of the test are given in Case 3 of Example 2 in 
Section V, demonstrating near Gaussian distribution of the fore
casting errors except for heavy tails. 

Based on the above analysis, the PI estimates are then eval
uated in three ways. First, the estimated standard deviations 
for 5- to 60-min errors are compared with the sample ones, 
respectively. Second, the one sigma coverage rates based on 
the estimated standard deviations are compared with 68%, i.e., 
one sigma coverage rate of the standard Gaussian distribution. 
Third, for each of the coverage rates 10%, 20%, ... , 90%, we 
calculate how many estimated standard deviations are needed to 
achieve the coverage rate for the errors, and then compare the 
result with how many standard deviations are needed to achieve 
the same rate for a Gaussian random variable. As shown from 
the numerical results in Case 3, the comparisons indicate that 
the PI estimates are reasonably accurate and conservative. 

V. NUMERICAL TESTING RESULTS 

The method was implemented in MATLAB. The open source 
code and the part of the test data and results are open, and can be 
obtained from http://github.com/ldmbouge/vstlf. For this sec
tion, the software was run on a server with dual Xeon quad core 
Intel E5620 2.4-GHz processors and a 36-GB memory. The per
formance measures include mean absolute error (MAE), mean 
average percentage error (MAPE), standard deviation of sample 
errors (SD), estimated standard deviation (ESD) which is the 
square root of the variance estimate derived in Section IV-A, 
and one sigma coverage. . r 

Two examples are presented to demonstrate our method. 
Example 1 uses a classroom-type problem to compare the 
WNNHKF to the methods of persistence, linear AR, single NN, 
and WNN so that our method can be verified in a simple way. 
Example 2 shows the values of EKFNNLL for capturing the 
near-linear relationship between the LL input and output mea
surement, as well as UKFNNLH and UKFNNH for capturing 
highly nonlinear relationships. This example also demonstrates 
the accuracy of the derived PI estimates. In both examples, 
the training, validation, and test processes in a three-way data 
split are used to determine the parameters in WNNHKF. All 
NNs (trained by Kalman filters) are trained off-line by using 
training data with weights randomly initialized, and the training 
terminates when a fixed number of iterations are reached. 

Example I: Consider the signal: 

y(t) = 200sin(27rl0t/fs) + 10sin(27r110t/ls) 

+ sin(27r250t/ Is) (30) 

where the sample rate Is equals 1000, y(t) is composed of 
a low frequency component 200sin(27rl0t/ Is), a medium 
component 10sin(271"110t/ fs), and a high component 
sin(27r250t/ Is). This signal is similar to the actual load 
in terms of the relative amplitude and frequency. A total of 
3600 noisy data points (t, y(t)) are randomly generated: 

:Y(t) = y(t) + e(t) (31) 
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TABLE I 
NUMBER OF HIDDEN NEURONS, AVERAGED MAES, AND AVERAGED 

SDs COMPARING THE RESULTS OF WNNHKF TO THE RESULTS 
OF PERSISTENCE, LINEAR AR, SINGLE NN, AND WNN 

Persistence Linear AR Sin11le NN WNN WNNHKF 
No.of 16 

15, 10,& IOfo 13, 10, & 10 fol 
Neurons LL, LH,&H LL, LH, &H 

Ave. 51.58 2.30 2.06 l.68 1.46 
MAE 

Ave. SD 58.14 2.89 2.68 2.13 1.83 

where t E [1, ... , 3600], and { e(t)} are independent and identi
cally distributed Gaussian noises with zero mean and unit vari
ance N(O, 1). The first one-third of data points are used for 
training, the second one-third of data points for validation, and 
the last one-third of data points for test. 

The WNNHKF is compared to the methods of persistence, 
linear AR, single NN without wavelet decomposition, and 
WNN. For all the methods, the relative increment transfor
mation is not used for this example because y(t) consists of 
three periodical sine functions, and there is no need to use the 
transformation to make {y(t)} stationary. As shown in Table I, 
the numbers of hidden neurons of NNs are separately given, 
and these numbers are determined based on training, validation, 
and test processes in the three-way data split. To evaluate the 
accuracy, MAEs and SDs are calculated for 1- to 12-step-ahead 
predictions, and then they are separately averaged. The aver
aged MAE and averaged SD in Table I indicate that our method 
is better than the single NN. These results also indicate that the 
WNNHKF improves the WNN. For this example, MAPE is not 
used since {y(t)} may have zero values. 

Example 2: Wavelet neural networks trained by hybrid 
Kalman filters are tested with ISO-NE's data. The training 
period is from January 1, 2007 to December 31, 2007, the 
validation is from January 1, 2008 to June 30, 2008, and the 
test is from July 1, 2008 to December 31, 2008. Five cases 
are presented. Cases 1-2 are for training and validation: Case 
1 for the combination of EKFNNLL and UKFNNLH,H when 
compared to other combinations; and Case 2 for predictions 
with Pis. Cases 3-4 are for test: Case 3 for test results and Pl 
evaluation; Case 4 for comparing the results of WNNHKF to 
the results of persistence, linear AR, ISO-NE's method, and 
WNN. 

Case I: The combination of EKFNN and UKFNN are ex
amined with ISO-NE's load data. There are totally eight com
binations of using EKFNN and UKFNNN for predicting three 
load components. To identify different strategies, the symbols 
LL, LH, and H are marked in subscripts. The validation re
sults from 5- to 60-min-ahead predictions in Table II show that 
the combination of EKFNNLL and UKFNNLH,H produces the 
overall smallest MAPEs and SDs when compared to other seven 
strategies. This also supports the analysis in the beginning of 
Section III that the LL component has a near-linear relation
ship between input and output measurement, whereas LH and 
H components have highly nonlinear relationships. Here, the 
combination of EKFNN LL, and UKFNN H,LH are treated as 
a nominal one and will be used for the rest of the testing. 

Case 2: The MAPEs, MAEs, SDs, ESDs, and one sigma cov
erage values as shown in Table III are calculated based on the 
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TABLE II 
MAPES(%) AND SDs (MW) FOR DIFFERENT COMBINATIONS OF NNs 
TRAINED BY KALMAN FJLTER(S) FOR INDIVIDUAL LOAD COMPONENTS 

EKFNNH,LH,LL UKFNNH,LH,LL 
EKFNNH,LH EKFNNH,LL 
UKFNNLL UKFNNLH 

Min 
MAPE SD MAPE SD MAPE SD MAPE SD 

5 0.12 24.45 0.12 24.84 0.13 23.73 0.12 24.02 
10 0.17 36.31 0.18 37.52 0.18 38.00 0.17 36.37 
15 0.22 45.35 0.23 47.17 0.23 47.36 0.22 45.18 
20 0.26 54.33 0.27 57.28 0.27 57.08 0.26 54.63 
25 0.29 62.76 0.31 65.94 0.31 66.17 0.29 62.84 
30 0.34 72.29 0.36 76.50 0.36 77.03 0.34 7L.88 
35 0.36 80.06 0.39 84.00 0.39 84.14 0.36 79.82 
40 0.41 90.39 0.43 94.65 0.43 94.76 0.41 90.59 
45 0.44 98.63 0.47 103.93 0.47 103.95 0.44 98.65 
50 0.48 108.25 0.51 114.15 0.51 114.35 0.48 108.13 
55 0.51 114.81 0.54 120.84 0.54 120.94 0.51 114.38 
60 0.55 124.15 0.59 130.37 0.59 130.80 0.55 123.81 

EKFNNLH,LL EKFNNH EKFNNLH EKFNNLL 
UKFNNH UKFNNLH,LL UKFNNH,LL UKFNNtt,LH 

Min 
MAPE 

SD 
MAPE SD 

MAPE SD MAPE SD 

5 0.12 24.11 0.13 25.37 . 0.12 25.37 0.12 23.52 
JO 0.17 36.04 0.18 37.89 0.18 37.89 0.17 35.84 
15 0.21 44.98 0.23 47.32 0.23 47.03 0.21 44.99 
20 0.26 54.29 0.27 57.23 0.27 56.98 0.26 54.74 
25 0.29 62.24 0.31 66.30 0.31 65.79 0.29 62.35 
30 0.34 72.30 0.36 76.61 0.36 76.96 0.33 7L.84 
35 0.36 80.ll 0.39 83.97 0.39 84.21 0.36 79.81 
40 0.40 90.21 0.43 94.93 0.43 94.50 0.40 90.39 
45 0.44 98.62 0.47 103.96 0.47 103.93 0.44 98.63 
50 0.48 108.D9 0.51 114.27 0.51 114.22 ,0.48 107.98 
55 0.51 114.99 0.54 120.59 0.55 121.18 0.51 114.58 
60 0.55 124.02 0.59 130.42 0.59 130.81 0.55 123.61 

validation data set. The first four measures gradually increase 
from 5- to 60-min-ahead forecasting results because the uncer
tainty expands as the'forecasting step increases. Based on the 
observation, ESDs have values from 22 MW to 131 MW, and 
ISO-NE's system load data have values around 15 000 MW. 
Since ESD values are much smaller than the system load mag
nitude, lower and upper bounds are always positive. For the 
case when the errors are not symmetric around estimates near 
zero, the bound can be truncated to a zero value if it is nega
tive. Similar treatment can be found in Fig. 2 of [26]. For the 
case when forecasted values are out-of-range, the load predic
tion after de-normalization can be clipped into a zero value if 
the prediction is negative or a historical maximum ifthe predic
tion is very high. The observation also shows that ESDs are very 
close to SDs. This corresponds to the analysis in Section III-A 
that the dynamic innovation covariance is generally consistent 
with the covariance calculated based on static historical errors. 
Based on ESDs and predictions, the one sigma coverage val.ues 
are calculated. Due to the heavy tails of errors (most of the large 
errors are related to the load predictions during peak hours), the 
coverage values for 5- to 60-min-ahead predictions have a range 
from 74% to 83% which are larger than the one sigma coverage 
rate of 68% under a Gaussian distribution. This indicates that PI 
estimates are reasonably accurate and conservative. The use of 
the Gaussian distribution is to be explained in Case 3. 

TABLE III 
MAPES (%),MAES (MW), SDs (MW), ESDs (MW), AND ONE SIGMA 

COVERAGE (%) FOR WNNHKF METHOD (BASED ON VALIDATION DATA SET) 

Min. MAPE MAE SD ESD 
ONE SIGMA 
COVERAGE 

5 0.12 17.22 23.52 22.79 74.27 
10 0.17 25.48 35.84 35.60 77.52 
15 0.21 31.64 44.99 49.29 81.16 
20 0.26 37.70 54.74 55.62 79.30 
25 0.29 42.98 62.35 61.19 77.93 
30 0.33 50.12 71.84 75.70 80.75 
35 0.36 54.16 79.81 81.43 80.84 
40 0.40 60.38 90.39 97.32 82.78 
45 0.44 65.98 98.63 102.60 81.85 
50 0.48 72.12 107.98 107.60 80.75 
55 0.51 76.52 114.58 112.53 80.40 
60 0.55 82.76 . 123.61 130.08 82.33 

TABLE IV 
MAPES(%), MAES (MW), SDs (MW), ESDs (MW), AND ONE SIGMA 
COVERAGE(%) FOR WNNHKF METHOD (BASED ON TEST DATA SET) 

Min. MAPE MAE SD ESD 
ONE SIGMA 
COVERAGE 

5 0.13 19.39 27.07 25.68 73.94 
10 0.18 27.33 38.06 38.28 76.00 
15 0.22 32.86 45.43 51.60 80.41 
20 0.26 39.01 54.24 57.40 78.10 
25 0.30 44.87 62.45 62.04 75.79 
30 0.34 50.97 71.40 76.11 78.74 
35 0.38 56.93 80.25 81.14 77.33 
40 0.42 63.30 89.56 96.58 80.23 
45 0.46 69.01 98.58 100.99 78.67 
50 0.50 75.46 108.52 105.52 77.49 
55 0.54 81.09 116.56 110.29 76.11 
60 0.58 87.43 125.93 128.36 79.62 

Cases 1-2 above are for training and validation data sets, and 
the following Cases 3-4 are for the test data set. 

Case 3: The five measures of the test data set in Table IV are 
very close to the measures of the validation data set in Table III. 
This indicates that WNNHKF parameters are properly selected. 
All the measures quantify forecasting accuracy in certain way, 
with the last two directly related to Pis. To further assess PI 
estimates, our standard-deviation-based Pis are evaluated and 
then compared to the empirical quantile-based Pis as follows. 

1) Evaluation of Standard-Deviation-Based Pls: As dis
cussed in Section IV-B, the 5- to 60-min-ahead forecasting 
errors have heavier tails than a Gaussian distribution. Take 
5-min errors from July to December 2008 for example. The 
Quantile-Quantile plot of the errors in Fig. 5 clearly shows 
heavier tails than the Gaussian. After removing the tails below 
the 0.7th percentile or above the 99.3th percentile of the errors, 
the p-values of the Kolmogorov-Smimov test, conducted in the 
two ways as described in Section IV-B, are both insignificant 
(> 0.1). This indicates that the remaining errors have a zero 
mean Gaussian distribution. Furthermore, the ESD based on the 
entire sample of errors is close to the SD (in columns 4 and 5 
of Tables III and IV). The ESD leads to an actual coverage rate 
of 74%, which is slightly larger than the one sigma coverage 
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Fig. 5. Quantile-Quantile plot of the 5-min-ahead forecasting errors versus the 
standard normal. 

TABLE V 
TOTAL PROBABILITY MASS(%) OF TAILS OF ERROR REMOVED TO MAKE 

KOLMOGOROV-SMIRNOV TEST INSIGNIFICANT (p > 0.1) 

Min. 5 10 15 20 25 30 

Total Probability 
Mass of Error Tails 

1.40 2.80 5.78 4.16 5.16 5.56 

Min. 35 40 45 50 55 60 

Total Probability 
Mass ofEITor Tails 

5.78 3.80 5.10 6.82 5.74 5.82 

rate of 68% under a Gaussian distribution. Therefore, the dis
tribution of the 5-min errors has heavier tails than a Gaussian 
distribution, but the total probability mass of the tails is very 
small (1.4%). Similarly, to make the Kolmogorov-Smirnov test 
insignificant for each of the other look-ahead times, as shown 
in Table V, the total probability mass of tails is calculated as 
the fraction of errors that have been removed. Finally, the same 
conclusion is also made for 10- to 60-min forecasting results. 

In view of the above distribution analysis, to evaluate PI es
timates, three comparisons are conducted. First, as shown in 
columns 4 and 5 of Table IV, the ESDs are quite close to the SDs 
for 5- to 60-min outs. Second, as shown in column 6 of Table IV, 
the one sigma coverage rates for 5- to 60-min-ahead predic
tions range from 73% to 80% which are larger than 68% under 
the standard Gaussian distribution. Third, consider WNNHKF 
5-min outs from July to December 2008 for example. To achieve 
the 90% coverage rate, the amount of the ESD is found to be 
1.52, which is slightly smaller than 1.64 under the standard 
Gaussian distribution. The last two comparisons indicate the 
ESD is conservative. The same conclusion is also made for 
10- to 60-min outs and for different coverage rates, i.e., 10%, 
20%,. . ., 90%, as shown in Table VI. To further illustrate the 
conclusion, we graph the amount of ESDs as a function of cov
erage rates ranging from 10% to 90% for each look-ahead time, 
and compare it to the amount of sigmas under the standard 
Gaussian graphed in the same way. As shown in Fig. 6, the curve 
for the ESD is always slightly below the curve for the standard 
Gaussian, indicating conservative Pis. Based on these, it can be 
concluded that the PI estimates for coverage rates up to 90% are 
reasonably accurate and conservative. 

To explore further, the PI estimates for coverage rates above 
90% are investigated. We have seen from Fig. 5 that forecasting 
errors can significantly deviate from the Gaussian distribution 
as they become more extreme. To attain very high coverage 
rates, a large number of extreme errors have to be accounted 
for. To assess the effects of these non-Gaussian extreme errors, 
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Fig. 6. Amount ofESDs as a function of coverage rates ranging from 10% to 
90% for each look-ahead time when compared with the amount of sigmas under 
the standard Gaussian. 

TABLE VI 
AMOUNT OF ESD TO ACHIEVE ALMOST THE SAME COVERAGE RATES 

COVERAGE RA TE 
Min. 10% 20% 30% 40% 50% 60% 70% 80% 90% 

5 0.1.1 0.22 0.33 0.45 0.58 0.73 0.90 1.13 1.52 
10 0.09 0.19 0.30 0.42 0.54 0.69 0.86 1.08 1.42 
15 0.08 0.16 0.26 0.37 0.48 0.61 0.77 0.97 1.30 
20 0.08 0.18 0.29 0.39 0.51 0.64 0.80 1.02 1.39 
25 0.09 0.20 0.30 0.41 0.53 0.68 0.86 1.09 1.49 
30 0.08 0.17 0.28 0.38 0.49 0.63 0.79 1.01 1.37 
35 0.09 0.18 0.29 0.40 0.51 0.66 0.82 l.05 1.42 
40 0.09 0.18 0.27 0.37 0.49 0.61 0.76 0.97 1.31 
45 0.09 0.18 0.28 0.39 0.49 0.63 0.78 I.OJ 1.38 
50 0.09 0.19 0.29 0.39 0.52 0.65 0.83 1.05 1.44 
55 0.09 0.19 0.30 0.41 0.53 0.67 0.84 l.08 1.49 
60 0.09 0.18 0.27 0.38 0.49 0.63 0.78 0.99 1.38 

COVERAGE RATE 
Min. 91% 92% 93% 94% 95% 96% 97% 98% 99% 

5 1.57 l.63 1.70 1.77 1.86 1.94 2.12 2.25 2.45 
10 1.48 1.55 1.62 1.70 1.80 1.89 2.03 2.25 2.49 
15 1.35 1.39 1.47 1.56 1.65 1.73 1.85 1.99 2.20 
20 1.44 1.51 1.59 1.66 1.75 1.84 1.97 2.17 2.38 
25 1.54 l.60 1.67 1.73 1.84 1.98 2.13 2.34 2.62 
30 1.42 l.49 l.57 1.65 1.72 1.82 1.98 2.12 2.41 
35 1.48 1.56 1.64 1.73 1.81 1.92 2.11 2.30 2.59 
40 1.35 1.42 1.50 1.59 1.68 1.83 2.04 2.25 2.45 
45 1.43 l.49 l.56 1.68 l.78 1.92 2.16 2.38 2.64 
50 1.51 1.58 1.68 1.79 1.89 2.02 2.24 2.46 2.82 
55 1.55 1.63 1.70 1.77 1.94 2.09 2.30 2.53 2.89 
60 1.44 1.51 1.59 1.68 1.78 1.90 2.07 2.37 2.68 

curves similar to those in Fig. 6 are graphed, but with cov
erage rates ranging from 91 % to 99%, as shown in Table VI. 
Fig. 7 shows that for coverage rates up to 95%, the amounts 
of ESDs for 5- to 60-min outs are slightly lower than those 
derived from the Gaussian distribution, indicating the PI esti
mates are still accurate and conservative. The result is also con
sistent with the observation from Table V that the total proba
bility mass of the tails ranges from 1.40% to 6.82% for 5- to 
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Fig. 7. Amount of ESDs as a function of coverage rates ranging from 91 % to 
99% for each look-ahead time when compared with the amount of sigmas under 
the standard Gaussian. 

60-min outs. For coverage rates higher than 95%, the curves of 
the ESD for some look-ahead times (i.e., 5- to 20-min-ahead 
and 30- to 40-min-ahead times) are still below the curve for 
the Gaussian distribution, indicating conservative Pis. On the 
other hand, generally speaking, for larger look-ahead times, the 
curves of the ESD are above the curve for the Gaussian distri
bution, indicating large errors. This is consistent with the fact 
that as look-ahead time increases, data uncertainty increases as 
well. 

2) Standard-Deviation-Based Pis versus Quantile-Based 
Pis: The standard-deviation-based Pis are further evaluated 
by comparison to the empirical quantile-based Pis which are 
constructed for nominal coverage rates of 10%, 20%, ... , 90%. 
To construct empirical quantile-based Pis, consider WNNHKF 
5-min-ahead forecasting errors for example. At time t, histor
ical 5-min errors (actual minus predicted load of 5-min-ahead) 
before time t are collected. For a nominal coverage rate 1-a, 
e.g., a = 0.1, the 5th and 95th percentiles of the errors are 
calculated. The 90% prediction interval for time t is obtained 
by adding the 5th and 95th percentiles to the predicted load. 
For our testing, the errors from July 1, 2008 to November 30, 
2008 are used to construct the quantile-based PI fort = 00 : 05 
am on December 1, 2008. When the error at 00:05 am becomes 
available, the new error and previous errors are then combined 
to construct the prediction interval for t = 00 : 10 am, and so 
on. To quantify forecasting accuracy, this process is repeated 
for all the data collected until the end of December. The result 
shows that the empirical quantile-based Pis of 90% nominal 
coverage rate cover 90.44% of the actual load data, indicating 

TABLE VII 
·. ACTUAL COVERAGE RATES(%) OF EMPIRICAL QUANTILE-BASED 

PIS FOR DIFFERENT NOMINAL COVERAGE RATES 

NOMINAL COVERAGE RATE 

Min. 10% 20% 30% 40% 50% 60% 70% 80% 90% 
5 10.77 18.43 27.19 38.22 48.05 57.80 67.56 78.73 90.44 
10 9.56 19.52 31.36 40.65 49.80 59.62 69.04 77.93 90.44 
15 11.17 19.78 29.74 37.95 47.38 57.74 66.89 77.52 88.96 
20 10.23 20.86 31.22 40.78 48.32 58.82 67.43 77.52 88.69 
25 .11.04 21.27 30.82 39.70 49.80 57.34 66.49 75.64 87.21 
30 10.23 20.73 30.82 40.65 48.99 58.28 67.97 77.66 88.29 
35 9.69 19.78 29.74 39.17 47.78 57.60 68.37 76.72 87.35 
40 8.34 18.57 30.01 38.22 47.78 57.87 65.9S 76.04 86.94 
45 9.42 20.18 29.61 38.63 48.4S S7.60 67.03 76.S8 87.08 
50 10.36 18.44 29.21 39.03 47.91 56.39 66.76 76.58 86.68 
55 9.69 19.l l 27.73 36.88 48.32 57.74 67.29 76.31 86.94 
60 8.88 18.44 26.92 36.47 46.84 56.39 67.03 75.91 87.08 

TABLE VIII 
WIDTHS (MW) OF EMPIRICAL QUANTILE-BASED PIS FOR DIFFERENT 

NOMINAL COVERAGE RATES AS SHOWN IN TABLE VII 

NOMINAL COVERAGE RATE 

Min. 10% 20% 30% 40% 50% 60% 70% 80% 90% 

s 5.81 11.19 16.81 23.07 29.75 37.20 46.48 S9.13 81.17 
10 7.08 15.20 23.13 31.77 41.34 52.86 65.43 83.63 I 16.90 
15 8.29 17.29 27.00 36.81 49.48 62.82 79.43 102.97 143.54 
20 9.80 20.55 32.61 44.80 58.12 73.52 93.58 119.83 167.01 
25 I l.8S 24.86 36.87 S0.18 65.20 83.44 107.20 136.81 193.64 
30 12.94 26.67 42.51 57.30 74.05 94.57 120.14 157.65 220.65 
35 14.46 29.67 46.42 62.86 81.87 106.65 134.IS 174.24 244,98 
40 16.29 34.40 51.92 70.34 91.84 116.61 145.71 188.65 266.49 
45 17.57 36.8S 56.36 74.89 97.33 126.86 1S7.81 206.28 293.29 
50 19.38 39.24 59.46 79.78 106.03 138.18 174.09 227.45 321.83 
SS 20.01 41.28 64.10 87.28 116.03 146.94 186.87 243.40 342.0S 
60 22.73 44.81 68.47 94.35 122.52 159.25 202.75 260.95 369.07 

the empirical quantile-based Pis are accurate. The same steps 
are taken for 10- to 60-min forecasting results and for different 
nominal coverage rates, ranging from 10% to 90%, and similar 
conclusions are obtained as shown in Table VII. 

The standard-deviation-based Pis are derived from dynamic 
innovation covariance of Kalman filters, whereas the empir
ical quantile-based Pis are derived from quasistatic historical 
errors. To compare these two types of Pis on an equal footing, 
the widths of the Pis under the same actual coverage rates 
are compared. Again, consider WNNHKF 5-min outs for 
December 2008 for example. Under the 90% nominal coverage 
rate, the empirical quantile-based Pis have an actual coverage 
rate of90.44% with an average width of81.17 MW. To achieve 
the same actual coverage rate, the width of standard-devia
tion-based Pis is found to be 1.47 x 2 ESD with an average 
width of 76.28 MW. The comparison indicates that under the 
same actual coverage rate, the standard-deviation-based Pis 
are generally narrower than the empirical quantile-based Pis. 
This result is consistent with the dynamic nature of the inno
vation covariance produced by Kaman filters as explained in 
Section III-A. The same steps are taken for 10- to 60-min-ahead 
forecasting results and for different nominal coverage rates 
ranging from 10% to 90%, and similar results can be obtained 
from Tables VIII and IX. 
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TABLE IX 
WIDTHS (MW) OF STANDARD-DEViATION-BASED Pis ACIDEVING THE SAME 

ACTUAL COVERAGE RATES AS SHOWN IN TABLE VII 

NOMINAL COVERAGE RATE 

Min. 10% 20% 30% 40% 50% 60% 70% 80% 90% 

5 5.71 I 1.42 17.12 22.83 29.58 36.33 45.67 58.12 76.28 
10 6.94 15.43 23.91 33.17 42.43 52.45 64.79 79.45 110.31 
15 8.32 16.63 28.07 36.38 49.90 62.37 81.09 99.80 133.06 
20 9.26 18.51 31.23 40.49 55.53 69.42 90.24 111.07 148.09 
25 9.99 19.98 33.72 43.71 59.95 74.94 97.42 119.90 159.87 
30 12.26 24.51 41.37 53.63 73.54 91.93 119.51 147.09 196.12 
35 13.05 26.11 44.06 57.11 78.32 97.90 127.27 156.64 208.86 
40 15.52 31.05 52.39 67.91 93.13 116.42 141.64 184.33 242.54 
45 16.23 32.48 54.81 71.05 97.43 121.79 148.18 192.84 253.73 
50 16.97 33.95 57.29 74.26 101.85 127.31 154.89 201.57 265.23 
55 17.71 35.43 59.78 77.49 106.28 132.85 161.63 210.34 276.76 
60 20.60 41.20 66.95 90.13 123.61 154.51 187.99 244.64 321.89 

TABLEX 
MAPES(%) COMPARING THE RESULTS OF WNNHKF TO THE RESULTS OF 

PERSISTENCE, LINEAR AR MODEL, ISO-NE's METHOD, AND WNN 

Min. Persistence Linear AR ISO-NE's Method WNN WNNHKF 
5 0.38 0.16 0.26 0.08 0.12 
10 0.74 0.22 0.30 0.13 0.13 
15 1.10 0.32 0.34 0.16 0.15 
20 1.46 0.44 0.38 0.20 0.16 
25 1.82 0.57 0.43 0.23 0.18 
30 2.18 0.71 0.48 0.27 0.23 
35 2.53 0.85 0.53 0.31 0.26 
40 2.89 1.01 0.60 0.35 0.33 
45 3.24 1.17 0.64 0.38 0.37 
50 3.59 1.35 0.70 0.42 0.36 
55 3.94 1.54 0.75 0.45 0.40 
60 4.29 1.73 0.81 0.49 0.47 

Case 4: Results of our WNNHKF method are compared to 
the results of persistence, linear AR model, ISO-NE's method in 
[17], and WNN method of [1] reviewed in Section 11-B, based 
on the ISO-NE's data set. The forecasting period for comparison 
is from July 1, 2008 to July 31, 2008 because ISO-NE only pro
vided results of this period to us. MAPEs in Table X show that 
the results of our method are better than the results of persis
tence, linear AR model, and ISO-NE's method. The same con
clusion is also made from MAEs. Furthermore, our WNNHKF 
method improves the WNN for 10- to 60-min-ahead predictions, 
but doesn't perform as well as the WNN for 5-min-ahead predic
tions. This is because the relationship between input and output 
measurement for an NN does not appear to be very nonlinear 
based on observation, and the UKFNN may not work as well as 
the standard NN for 5-min-ahead predictions. The same conclu
sion is made for winter and spring seasons (December 2008 to 
May 2009) when the performance ofWNNHKF and WNN are 
compared. For the same reason, the WNNHKF does not perform 
as well as the WNN for fall season (September to November 
2008). 

VI. CONCLUSION 

This paper presents a method of wavelet neural networks 
trained by hybrid Kalman filters. Based on data analysis, an 
EKFNN is used to capture the near-linear relationship between 
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the LL input and output measurement for an NN, and two 
UKFNNs are used to capture the highly nonlinear relationships 
for LH and H load components. By replacing the first-Qrder 
back propagation algorithm with the second-order Kalman-type 
algorithms, the dynamic innovation covariance can be obtained 
for PI estimates. Consequently, the estimated standard devia
tion, which is derived based on the nonlinear transformation 
of WNNHKF, is close to the sample standard deviation. To 
evaluate Pis, the forecasting errors are demonstrated to have 
heavier tails than a Gaussian distribution. For the forecasting 
errors, both the one sigma coverage and the amount of the 
estimated standard deviations needed to achieve a given cov
erage rate are close to the ones under the standard Gaussian 
distribution. Numerical testing results based on ISO-NE's data 
show that the WNNHKF provides the overall best predictions 
with accurate and conservative PI estimates. 
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