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Abstract-Very short-term load forecasting predicts the loads 
1 h into the future in 5-min steps in a moving window manner 
based on real-time data collected. Effective forecasting is impor
tant in area generation control and resource dispatch. It is how
ever difficult in view of the noisy data collection process and com
plicated load features. This paper presents a method of wavelet 
neural networks with data pre-filtering. The key idea is to use a 
spike filtering technique to detect spikes in load data and correct 
them. Wavelet decomposition is then used to decompose the filtered 
loads into multiple components at different frequencies, separate 
neural networks are applied to capture the features of individual 
components, and results of neural networks are then combined to 
form the final forecasts. To perform moving forecasts, 12 dedicated 
wavelet neural networks are used based on test results. Numerical 
testing demonstrates the effects of data pre-filtering and the accu
racy of wavelet neural networks based on a data set from ISO New 
England. 

Index Terms-Neural networks, pre-filtering, very short-term 
load forecasting, wavelet and filter bank. 

I. INTRODUCTION 

V ERY short-term load forecasting (VSTLF) predicts the 
loads one or several hours into the future in steps of a few 

minutes (e.g., 5 min) in a moving window manner based on on
line data collected every few seconds (e.g., 4 s). Accurate load 
forecasting has traditionally been important since it is critical for 
automatic generation control and resource dispatch, and it also 
ensures revenue adequacy for the independent system operator 
(ISO) multi-settlement markets. Effective VSTLF, however, is 
difficult in view of the noisy data collection process with pos
sible malfunctioning of data gathering devices and complicated 
load features. 

Methods for very short-term load forecasting are limited. 
Existing methods of persistence, extrapolation, time series, 
Kalman filtering, fuzzy logic, and neural networks (NN) will be 
reviewed in Section II. Among these methods, neural networks 
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have been widely used. A standard NN was used for VSTLF in 
[2]. To improve data stationarity, inputs to an NN were trans
formed by using logarithmic differences in [3] and by using 
relative increments in [4]. A single neural network, however, 
may not be able to accurately capture complicated load features 
because the load data have multiple frequency components, 
and each may have its unique pattern. Furthermore, spikes are 
randomly distributed over time and have different magnitudes 
and widths. They affect neural network training, and result in 
degraded predictions. An intuitive way to filter the spike is to 
compare the measured and predicted loads, and if the absolute 
value of the difference is greater than a threshold, a spike is said 
to be detected. The spike was then replaced by the interpolated 
value [3] or the predicted value [5]. This way, however, may 
not be effective. To reduce the effects of spikes, further analysis 
and filtering are needed. 

Recently, we have developed a method for short-term load 
forecasting (STLF) which predicts the loads of tomorrow in 
hourly steps based on the single-level wavelet decomposition 
and neural networks trained through using a data set from ISO 
New England [6]. A correction coefficient scheme was also 
developed to enhance predictions around holidays [7]. These 
methods presented a way for handling load features at different 
frequencies. However, the load features of STLF are quite dif
ferent from the ones of VSTLF because short-term load data 
have fewer patterns than very short-term load data to be an
alyzed in Section IV-A. Also, spikes were not considered be
cause they had been removed by ISO New England before STLF 
was performed, whereas removing spikes is a critical issue for 
VSTLF. 

In this paper, wavelet neural networks (WNN) with data pre
filtering are developed to forecast the loads 1 h into the future in 
5-min steps in a moving window manner. To effectively remove 
spikes, it is observed that spikes may have different magni
tudes and widths. Thus, they are classified into micro and macro 
spikes at either 4-s or 5-min resolutions. Micro and macro fil~ 
tering techniques are developed in Section III to effectively de
tect and filter them out. The advantage of filtering spikes in the 
4-s data series is to provide the leading indicator to the operator 
of a potential SCADA telemetry problem in real-time. Filtering 
spikes in the 5-min data series is often a lagging indicator of 
faulty load telemetry. 

Wavelet neural networks are developed in Section IV. The 
wavelet technique is used to decompose the loads into mul
tiple frequency components. Each component is then appro
priately transformed, normalized, and fed with time and date 
indices to a neural network, so that the features of individual 
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components are properly captured. Forecasts from individual 
neural networks are then transformed back and combined to 
form the final forecasts. To perform moving forecasts, 12 dedi
cated wavelet neural networks are used based on test results. 

In Section V, the method is configured through training, 
validation, and test data sets as presented in [8, Ch. 2]. Example 
1 uses a classroom-type problem to illustrate the effects of 
the wavelet decomposition. Based on the data set from ISO 
New England (ISO-NE), Example 2 demonstrates the values of 
data pre-filtering, wavelet decomposition, load transformation, 
neural networks, and dedicated wavelet neural networks for 
VSTLF. The code as well as part ofthe test data and results 
are open, and can be downloaded at http://github.com/ldm
bouge/vstlf. 

A preliminary version of this paper was presented in [1] 
where spikes were classified and filtered. A single WNN was 
then established for VSTLF. Based on this preliminary result, 
we analyze the property of spikes with respect to magnitudes 
and widths, and discuss spike filtering methods and their pa
rameters. After a thorough data analysis, additional NN inputs 
are tried and selected. The parameters of the filter bank in 
wavelet transform are then discussed, derived, and selected. 
Finally, 12 dedicated WNNs are developed to perform moving 
forecasts. For our method, model parameters are determined 
through training, validation, and test processes in a three-way 
data split. 

II. LITERATURE REVIEW 

Not many papers report the handling of spikes. One way is 
to compare measured and predicted loads, and if the absolute 
values of the differences are greater than a threshold, spikes 
are declared and then replaced by predicted values in [5]. An
other way is to replace observed spikes by zeros which are then 
fixed by using a splining algorithm. If the length of zeros is 
too long, interpolations from a similar day's loads are used to 
fill zero-valued data [3]. These methods are valuable. However, 
they are prone to errors due to the uncertain nature of the load 
data and the various magnitudes and widths of spikes. Spikes 
replaced by bad values may degrade future predictions. There
fore, spikes have to be further analyzed, and effective ways are 
highly needed for filtering them out. 

Spike filtering has also been reported for short-term load fore
casting. In comparison to VSTLF, spikes in STLF have different 
features with respect to magnitudes and widths because of the 
integrative nature of short-term load data and the fact that most 
spikes should have been removed before STLF is performed. 
The simple techniques consisting of if-then rules, low pass fil
tering, and NN based self-filtering were used to handle STLF 
spikes in [9]. Recently, entropy related functions, which are ro
bust to noisy data, were developed in [10] and were further 
applied to the training of neural networks for future three-day 
wind power forecasting [11]. To perform the online training, a 
self-adaptive approach was used in [11] where "the information 
potential of the error" was recursively estimated. Although these 
methods are robust to noisy data, in order to help aforecasting 
model learn normal load patterns rather than complicated noisy 
data in real-time, it is desirable to remove spikes before data are 
used for VSTLF. 

Limited VSTLF methods have been reported in the literature, 
and they include methods of persistence, extrapolation, time se
ries, fuzzy logic, Kalman filtering, and neural networks. Per
sistence forecasting [12] may be the simplest method, and it as
sumes that the forecast data will be the same as the last measured 
values. This is not sufficient for VSTLF because very short-term 
load series change in real-time. Extrapolation predicts the load 
based on the past by using a least square algorithm [13] or by 
using a curve fitting algorithm based on a shape similarity crite
rion [14]. The load increment was predicted through a weighted 
average of increments of previous loads in [15]. A dynamic 
clustering method was used to pre-group the loads into multiple 
groups, and load increments were then forecasted in [16]. 

Similar to the extrapolation method, the auto-regression 
method uses a simple linear combination of the previous load 
series for prediction(s). Its coefficients were tuned online using 
the leasLmean square algorithm in [2]. The method was ex
tended to autoregressive integrated moving average (ARIMA) 
for load forecasting, and parameters were updated via a re
cursive least square algorithm with a forgetting factor in [17]. 
ARIMA was extended to seasonal autoregressive integrated 
moving average to capture the seasonal load feature in [18]. 
Support vector regression method was developed for VSTLF, 
which was used with kernel functions to create complex non
linear decision boundaries in [19]. Holt-Winters adaptation and 
the new intraday cycle exponential smoothing method were 
used together for predictions in [20]. 

Kalman filter was applied to VSTLF in a few references. 
For example, the loads were separated into deterministic and 
stochastic components, and both were predicted via Kalman 
filters in [21]. While in [5], the deterministic and stochastic 
components were predicted via the least square algorithm and 
Kalman filter, respectively. Fuzzy logic methods convert input 
data to fuzzy values which are then compared with patterns ex
tracted from the training process. The most similar fuzzy value 
was chosen and then mapped to the prediction in [2]. Fuzzy 
logic was also combined with neural networks to form a fuzzy 
neuron system, and the parameters of which were configured 
via chaotic dynamics reconstruction techniques in [22] and [23]. 
A hybrid neuron-fuzzy approach was developed in [24] which 
used the cross validation methodology to choose inputs, mem
bership functions, and optimization methods. 

Among all these VSTLF methods, neural networks have been 
widely used. They assume a nonlinear functional relationship 
between the loads to be forecasted and affecting factors, and es
timate the weights based on historical data. Their inputs may 
include the time and date indices, the loads of previous hour, 
and the loads of yesterday and last week with the same time 
and date indices to the forecasting hour. For example, different 
feature sets of historical load data were tested in [25]. Weather 
information is seldom used for VSTLF due to the large time 
constant of the load [4]. Transformations of load inputs, e.g., 
the logarithmic difference and relative increment, have been 
reported to improve data stationarity in [3] and [4]. Also, dif
ferent neural networks were used for different periods of a day 
[4]. These neural network methods provide valuable informa
tion for the input selection and transformation. However, very 
short-term load data have complicated features, and few papers 
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present thorough analysis and effective ways to capture load fea
tures in real-time. 

III. DATA PRE-FILTERING 

For ISO New England, load data are collected from data col
lecting devices every 4 s and then aggregated into 5-min loads. 
Because of possible malfunctioning of collecting devices, 
spikes exist within load data. These spikes do not reflect true 
loads and, as a result, affect NN training and degrade predic
tions. Potential spikes are observed having varying magnitudes 
and widths at either 4-s or 5-min resolutions, and they are 
randomly distributed over time. A spike is said to be detected 
if the absolute value of the difference between the original load 
and this smoothed load exceeds a threshold. Spikes are then 
classified as "micro spikes" and "macro spikes" based on their 
widths. A micro spike is defined if its width is smaller than a 
threshold 'WI (in terms of number of resolution units of either 
4 s or 5 min), whereas a macro spike is defined if its width is 
in-between two thresholds 'WI and W2. These thresholds are 
determined based on training, validation, and test data sets. It 
is difficult to differentiate the spikes with widths larger than 
W2 from regular load changes. However, this situation usually 
requires human intervention, and will not be considered. 

To filter these spikes, micro spikes are first recognized at the 
4-s resolution and are removed by using the micro spike filtering 
method which will be presented in Section III-A. After aggre
gating into 5-min loads, micro spikes are again recognized and 
filtered at the 5-min resolution by using the same method. Fi
nally, macro spikes are recognized and processed at the 5-min 
resolution by using the macro spike filtering method which will 
be presented in Section III-B. Macro spike filtering is only ap
plied to the loads at the 5-min resolution because macro spikes 
at the 4-s resolution may become micro spikes after integration. 

A. Micro Spike Filtering 

The key idea for filtering the micro spike is the use of a zero 
phase filter to obtain the smoothed load. If the absolute value 
of the difference between the original load and this smoothed 
load exceeds a threshold, a spike is said to be detected. Then, 
the spike is replaced by the smoothed load. This method is first 
applied to the loads at the 4-s time resolution and then at the 
5-min time resolution. 

Intuitively, the response of a zero phase filter to a rectangular 
pulse function should be a smoothed and symmetric function 
without shifting in time. This filter is realized by a unit impulse 
response symmetric with respect to the time zero axis. When 
taking Fourier transform, the resulting function should have the 
phase identically equal to zero. Such a filter is called a zero 
phase filter as described in [26, Ch. 19]. In practice, the idea 
is to take the average of the actual data in the time-forward and 
reversed operations with equal weights over the filter window 
as explained below [27, pp. 604-605]. The result from the zero 
phase filter has precisely zero phase distortion and magnitude 
modified. Let the input sequence at time t + N be denoted as 
X = {x(t + 1), ... , x(t + N)}, where N is the length of the 
latest load inputs to be processed in real-time. Sequence Y = 
{y( t + w), ... , y( t + N)} is sequentially produced by the filter 
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with the width 'W in the following time-forward operation ofthe 
zero phase filter: 

n 
x (t + i) 

(1) y(t+n) = L on = 'W, ... ,N. 
w 

i=n-w+l 

The above sequence is appended by {x(t+N + 1), ... , x(t+ 
N + w - I)} (explained in the next paragraph) to make sure the 
sequence {y( t + N - w + 1), ... , y( t + N)} after the time-re
versed operation of the zero phase filter has a similar magni
tude to the load segment {yet + w), . .. , yet + N - 'W)}. Fol
lowing [27], the resulting sequence is reversed and run through 
the same filter again. The output of this second filtering is then 
time reversed to generate the final smoothed series Z = {z(t + 
w), ... , z(t + N)}. 

Since a zero phase filter is causal, the load inputs have to be 
appended. The load segment {x(t + N + 1), ... , x(t + N + 
w -I)} is available during training. However, it is not available 
during real-time forecasting. To append load inputs with a rea
sonable sequence, the load segment {x(t+N -'W+1), ... 1 x(t+ 
N)} is mirrored horizontally and flipped vertically with respect 
to the point (t + N, x( t + N)) in the coordinate space. Based 
on observation, this is because the changes ofload series over a 
short time period have similar slopes for most of the times. 

To detect spikes, a sequence of the difference D = {d( t + 
'W), ... , d( t + N)} between the smoothed and actual is obtained 
by 

d(t+n)=z(t+n)-::r;(t+n), n='W, ... ,N. (2) 

A micro spike is said to be detected ifthe absolute value of d(t+ 
n) exceeds a threshold m, and the width of the spike is smaller 
than a threshold 'WI (the width of the processing window). To 
replace a spike with a corrected signal, the value of x( t + n) is 
replaced with z( t + n). These thresholds are analyzed and then 
determined through training, validation, and test processes in a 
three-way data split. 

Fig. 1 depicts the 4-s load series before and after the micro 
spike filter is applied. The spikes with widths smaller than 
the processing window 'WI (micro spikes, as marked by the 
three small red circles) are removed by the filter. Spikes with 
widths close to or greater than the processing window 'WI 

(macro spikes, as marked by the large black ellipse) are only 
attenuated or cannot be handled by the micro spike filter at 
the 4-s time resolution. However, they may become micro 
spikes after integration, and can then be handled by the same 
method at the 5-min resolution. In this way, all micro spikes 
within the processing window are detected and replaced by 
smoothed loads, whereas the load data outside the window are 
not touched. 

B. Macro Spike Filtering 

The key idea for filtering out macro spikes is to detect a pair 
of edges, and fix the loads between the two edges with linear 
interpolation values. This method is only applied to the loads at 
the 5-min resolution because macro spikes at the 4-s resolution 
may become micro spikes after integration. To detect edges, the 
first-order differencing transformation is applied to the load se
ries at the 5-min resolution. The edge is said to be detected when 
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Fig. 1. Before (top) and after (bottom) micro and macro spike filtering based 
on two days of continuous ISO-NE load data at the 4-s resolution. 
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Fig. 2. Before (top) and after (bottom) macro spike filtering at the 5-min res-
olution. 

the absolute value of the difference exceeds the threshold m. A 
macro spike is then said to be recognized when two sequential 
edges are located, and the width of the two edges is less than a 
threshold W2 and equal to or greater than the threshold Wl. The 
spike whose width is less than Wl is a micro spike, and should 
have been removed in micro spike filtering which is described 
in Section II-A. To fix a macro spike, the load in-between the 
two edges is replaced by a value from linear interpolation. This 
interpolation method is used because the changes ofS-min loads 
over a short time period have similar slopes for most of the times 
based on observation. Fig. 2 depicts the S-min load series (4-s 
integrated into S-min loads depicted in the second plot of Fig. 1) 
before and after the macro filtering is applied. 

IV. WAVELET NEURAL NETWORKS 

To perform accurate predictions after pre-filtering, load prop
erties are analyzed in Section IV-A. Data analysis shows that the 
load data have different components: a very fast changing com
ponent from five to IS-min resolutions, a fast changing compo
nent from IS-min to 1-h resolutions, and a slow changing com
ponent with hourly, weekly, and monthly patterns. The WNN 
method is developed to capture the complicated load proper
ties. To accurately capture load features at multiple frequencies, 
a wavelet technique is used to decompose the loads into several 
frequency components in Section IV-B. Due to the use of con
volution in the wavelet transform, additional data need to be 
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Fig. 3. Power spectrum density for 5-min load data (January 1,2007 to June 
30,2(08). 

padded at the end side of the load segment in real-time. Rela
tionships among the padding parameters are discussed and de
rived. Different padding strategies are then tested, and the best 
one is determined via the test data set. In Section IV-C, each load 
component is properly transformed and then fed with other time 
and date indices to a separate neural network. Predictions from 
individual neural networks are combined to form the forecasts . 
Finally, 12 dedicated wavelet neural networks are used to per
form moving forecasts in Section IV-D. 

A. Load Property Analysis 

Very short-term load data have complicated properties. They 
are illustrated by the power spectrum density which describes 
how the power of load data is distributed with frequency. As 
shown in Fig. 3, the main power lies in the low frequency 
and several small pedals afterward, and each one has a unique 
frequency component. Intuitively, this frequency domain is 
divided into three frequency components as denoted by low, 
medium, and high frequencies. If each one is further magnified 
by amplitude spectrum (explained in the next paragraph), it is 
observed that these components have different features. 

As depicted in Fig. 4, the amplitude spectrum shows that the 
low, medium, and high load frequency components have dif
ferent features. Spectral lines for the low frequency component 
in the eclipse are magnified furthet. These spectral lines rep
resent unique load patterns, and the ones located at frequen
cies corresponding to hourly, weekly, and monthly information 
are marked. The amplitude spectrums for the medium and high 
load frequencies (reflecting fast changes in load data) have small 
magnitudes, and hence are not magnified. Dashed lines are used 
to separate load components as they are in the separation in 
Fig. 3. 

B. Filter Bank in Wavelet Transform 

The load data have multiple frequency components as de
picted in Fig. 3, and each may have a unique pattern as depicted 
in Fig. 4. An intuitive idea is to decompose the loads into mul
tiple frequency components and process each independently. 
For example, the load data were decomposed into multiple res
olution scales in [28] and [29]. Fourier transform is a straight
forward technique to represent the signal as a sum of sinusoids 
which are only localized in frequency. In contrast to Fourier 
transform, wavelets are localized in both time and frequency and 
often give a better representation using multi-resolution anal
ysis. A detailed introduction to wavelets can be found in [30, 
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Fig. 4. Amplitude spectrum for 5-min load data. 

Ch. 1]. Motivated by the successful one-level wavelet decompo
sition for short-term load forecasting in our previous work [6], a 
wavelet technique is chosen to decompose input loads into mul
tiple frequency components. The input loads are first decom
posed into low (L) and high (H) frequency components at level 
one. The L frequency component called "approximation" rep
resents a general trend of the signal, whereas the H frequency 
component is viewed as a difference between two successive 
approximations [28]. Since the load has a large magnitude and 
multiple frequency information, the L frequency component is 
further decomposed into low-low (LL) and low-high (LH) fre
quency components. There is no need to decompose the H com
ponent because it has a small magnitude as compared to the L 
frequency component. The decomposed level is analyzed later 
on. Components LL, LH, and H are very similar to the low, 
medium, and high frequencies described in Section IV-A. 

To implement the two-level wavelet transform, a 
three-channel filter bank is used as shown in Fig. 5. The 
high frequency channel consists of the analysis and synthesis 
stages. At the analysis stage, a high pass filter (a wavelet func
tion that plays the role of the anti-alising) G I filters out the low 
frequency component. A down-sampling step then removes the 
odd-numbered data points. At the synthesis stage, the up-sam
pling step pads zeros to down-sampled data to recover the data 
length. A high pass filter HI then removes the replicas of signal 
spectrum caused by up-sampling. Similarly, the low-high fre
quency channel uses a low pass filter Go to compute the general 
trend, and then holds the even-numbered points. Next, these 
points are further decomposed into two parts. The low-high part 
convolves with G I and then takes steps similar to those for the 
high frequency channel. To recover the initial input length, the 
output from HI has to be up-sampled and convolve with Ho. 
These are the steps to produce the LH frequency component. 
The same is true for the low-low frequency channel. Filters 
Go, GI, Ho, and HI have to satisfy perfect reconstruction and 
orthogonality [31]. 

The filter bank in the wavelet transform described above 
adopts a circular convolution as explained in [31, Ch. 8]. 
Circular convolution causes boundary distortions which affect 
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Fig. 5. Three-channel filter bank. 

neural network predictions. To reduce the distortion, it is 
necessary to extend the signal beyond the boundaries. In the 
high frequency channel shown in Fig. 5, the distortion length 
for a convolution between the input loads and G I is (lw - 1) 
based on the convolution theory, where lw is the filter length. 
Down-sampling and up-sampling do not produce the distortion. 
HI introduces another distortion with the same length (lw - 1). 
The total distortion length is 2( lw - 1). The low-high frequency 
channel sequentially convolves the inputs with four filters (Go, 
GI, HI, and Ho) with a final length of the distortion 4(lw -1), 
doubling that of the high frequency channel. The same is true 
for the low-low frequency channel. The distortion length is thus 
roughly doubled for a component which is further decomposed 
one more level. A detailed analysis can be found in [32]. To 
make sure that at least one value is not affected by distortion, 
the load inputs to NN need to be padded. The padding length 
has to be equal to or greater than the distortion length (wmaxlev 
function in MATLAB Wavelet Toolbox): 

l;r; = (I'll! - 1) ·21v1 (3) 

where l;r; is the distortion length which indicates the minimum 
padding length, and lvl is the level ofthe decomposition. Hence, 
the total length for load inputs to be decomposed has to be equal 
to or greater than the sum of the minimum padding length lx 
and the length of the load inputs of the last hour (12 points). For 
VSTLF, the latest historical data are available and used to pad 
the last hour's loads at the front. Additional data are needed to 
pad the last hour's loads at the end, as discussed in the end of 
this subsection. 

From (3), the relationships among the decomposition level 
lvl, the filter (G and H) length I'll!, and the minimum padding 
length lx are very close. It can be concluded that fixing lvl and 
increasing lw, or vice versa, will increase lx. This indicates that 
the padding length will increase, which may not be good be
cause a long padding to load inputs can result in a poor training 
and prediction for NN. However, lvl should not be too small be
cause the features ofload components cannot be fully captured. 
The same is true for l'll! because a smalllw has a poor ability to 
represent the load component behaviors. It is clear that neither 
lw nor lvl should be too large or small, so that a reasonable lx 
can be obtained. Therefore, a balance among lvl, lw, and lx has 
to be made due to their close relationships in (3). 

To choose a good lvl for decomposition, different values are 
tested and compared, while lw and lx remain fixed. Two-level 
decomposition is found to be the best among levels from zero 
to three in Example 2 in Section V. This corresponds to the 
scheme presented in Fig. 5 with three decomposed frequency 
components H, LH, and LL. To choose a good filter length 
lw, a proper wavelet has to be chosen using the previous fixed 
lx and newly determined lvl(= 2). Daubechies (Db) wavelets 
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Fig. 6. Structure of wavelet neural networks. 

are adopted in our method because they belong to a family 
of orthogonal wavelets and are characterized by frequency re
sponses having maximum flatness (at 0 and 71"). Db me~bers 
tested are Db2-Db20 (even index numbers only). The mdex 
number refers to the filter length lw, and has the ability to repre
sent complicated behaviors of signal components. For example, 
Db2 encodes constant components, and Db4 encodes constant 
and linear ones. However, the Db number cannot be too large. 
Otherwise, the minimum padding length will increase. Based on 
observation, the changes ofload series over a short time period 
have similar slopes for most of the times. Hence, Db4 seems to 
be a reasonable choice because it encodes linear signal compo
nents, and is demonstrated to be the best among all the index 
numbers tested as presented in Section V. 

Once lvl(= 2) and lw(= 4) are fixed in (3), Ix can be cal
culated ((lw - 1) . 21vl = 12). Since the last hour's loa~s (12 
points) are used as NN inputs, the total length for load mputs 
to be decomposed has to be equal to or greater than the sum of 
the minimum padding length and the length of the last hour's 
loads (i.e., the total length 2 24). A more precise number c~n 
be calculated from the derivation in [32]. To further reduce dIS
tortion effects, padding strategies (e.g., zero-padding, periodic 
extension, and symmetrization) are tested. According to the te~t 
in Example 2 in Section V, symmetrization, a boundary replI
cation which pads the loads by adding points symmetric to the 
original, is demonstrated to be the best strategy. This also cor
responds with the conclusion on [31, p. 263]. These parameters 
are determined through training, validation, and test processes 
in a three-way data split. 

C. Neural Networks 

To capture decomposed frequencies, our idea is to properly 
transform individual components as presented in Section IV-A. 
The transformed components are then fed to separate neural net
works. Finally, individual predictions from NNs are added to 
form the forecasts as depicted in Fig. 6. 

The load components are treated differently. The LL 
frequency represents the majority of load information, i~

cluding hourly, weekly, and monthly patterns as analyzed In 

Section IV-A. Since the loads from 5- to 60-min outs are pre
dicted each time, the loads of the last hour (lag = 12) are used 
as inputs. Loads with other lags are also tested, but the results 
are not further improved. To remove a first-order trend and 
anchor the predictions by the latest load, the relative increment 
(RI) in loads in [4] is applied: 

HI _ (LLd (t) - LLd (t - 1)) 
LLd (t) - LLd (t - 1) (4) 

Fig. 7. (a) Amplitude spectrum for normaliz~d low-low frequency before ap
plying RI. (b) Amplitude spectrum for normalized low-low frequency after ap
plying RI. 

where LL represents the low-low frequency load component at 
day index d, and t is the time index in a 5-min period. RI in
dicates the relative increment transformation and is used to sta
tionarize the load component series. This transformation reveals 
more of the hidden information in the LL frequency component 
in Fig. 7(b) than the one without applying RI in Fig. 7(a). But 
the other observation shows that RI reveals less of hidden in
formation in the LH and H components than the one without 
applying RI. Hence, RI transformation is only applied to the LL 
load component. All the components then have to be normalized 
and fed to individual NNs. 

In addition to load inputs (5 to 60 min), time and date indices 
are parts of the neural network inputs, including hourly, weekly, 
and monthly indices. Furthermore, sunset time is included to 
capture the load feature related to the street lighting. These in
dices are used to help NNs indentify the periodical pattems of 
load data. Similarly, low-high and high frequency NNs adoptthe 
same time and date indices but use the load components without 
RI transformation. Finally, results from three NNs are summed 
up to form final forecasts. Other additional inputs were tested 
but not considered because the results were not significantly im
proved. These inputs include: area control errors, frequencies, 
and some selected loads from history (e.g., loads of the last sev
eral hours, loads of selected hours from yesterday, similar day's 
loads, and so on). Based on the literature review, actual weather 
data and weather forecasts from related methods, e.g., the cli
matology method in [33], are seldom used for VSTLF inputs 
because of the large time constant of the load and weather re
lationship. Also, real-time weather data are not available from 
ISO New England. 

To narrow the numerous choices of input candidates down, 
different combinations of data inputs are screened based on 
small data sets. For example, load data from November 2007 
to December 2007 are used for training, and loads for January 
2008 are then predicted. The resulting candidate inputs are then 
examined through training, validation, and test processes in a 
three-way data split. 

D. Moving Forecasts 

When performing moving forecasts every 5 min, the intuitive 
approach would be to train a single WNN offline with histor
ical data as presented in [34, Ch. 4] and train the WNN on
line whenever a new data point is available. This is the same 
as the self-adaptive training process of [35]. However, test re
sults using this approach are not satisfactory. Based on further 
testing, our final configuration consists of 12 dedicated WNNs, 
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one for each 5-min period in the hour. In this way, individual 
WNNs can be properly trained. For example, at 2:55 am, WNN 1 

predicts the loads from 3:00 am to 3:55 am in 5-min periods; 
WNN2 at time 3:00 am predicts the loads from 3:05 am to 4:00 
am in 5-min periods, etc. Then at 3:55 am, when the measured 
values are known for the past 12 time steps, WNN 1 is trained 
online (updated) with the data from 3:00 am to 3:55 am and then 
predicts the loads from 4:00 am to 4:55 am, and the process re
peats. 

V. NUMERICAL TEST RESULTS 

The method was developed in MATLAB for prototype im
plementation and then converted to JAVA using Eclipse. The 

-open source can be downloaded at http://github.com/ldmbouge/ 
vstlf. In this section, the software was run on a server with dual 
Xeon quad core Intel E5620 2.4-GHz processors and 36 GB 
of memory. The performance measures include mean absolute 
error (MAE), mean absolute scaled error (MASE) as presented 
in [36] and [37], mean average percentage error (MAPE), and 
standard deviation of sample errors (SD): 

12n+k 
MAE (k) = n- 1 L ILp (t) - LA (t)1 

k = 1, ... , 12, (5) 

MASE(k) = MAE(k)out-of-samPle, (6) 
M AE'in-Hn'frl'l,ze 

MAPE(k) = n_11%k ('Lp(tl~(~A(t)l) x 100%, (7) 

SD (k) = 

[n-' '~' (L' (t) - n-,'~'rL' (t) - LA (t)}) r' 
(8) 

In the above equations, index k represents 5 to 60 min in 
5-min steps, n indicates the number of hours in the forecasting 
horizon, and LA(t) and Lp(t) denote actual and predicted 
loads at sample time t, respectively. The general performance 
measures include MAE, MAPE, and SD. MASE provides a 
scale-free error metric for comparing forecasting methods on a 
single series [36]. In (6), the numerator MAE(k)out-of-Hample 
for k-step out (k = 1, ... ,12) is calculated for the multistep 
WNN forecasts computed out-of-sample (in the testing data 
set). The denominator MAEin-Hample is calculated for the 
one-step "naIve forecast" computed in-sample (in the training 
and validation data sets). The naIve forecast for each future 
period is the actual value for the previous period [37]. This 
denominator MAEin_"ample is used to scale the numerator 
MAE( k) out-of-sample to generate a scale-free error metric that 
is stable, easy to compute, and in the correct unit. If the MASE 
value is less than one, this indicates that the forecast of the 
presented method is better than the one-step naive forecast. 
However, if the MASE value is greater than one, this indicates 
the opposite. Multistep MASE values are often larger than one 
as the forecasting horizon increases because one step naive 
forecast is used for scaling [36], [37]. Equations (5)-(8) can 
also be applied to moving forecasts with multiple WNNs. 

--:-~-:-:-:-:--------,--- -
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Two examples are presented to demonstrate our method. 
Example 1 uses a classroom-type problem to compare a single 
(standard) NN to our two-level wavelet NNs so that our method 
can be duplicated and verified in a simple way. Example 2 
demonstrates the values of spike filtering methods, two-level 
decomposition, Db4 wavelet, Symmetrization padding, se
lected time and date indices (hourly, weekly, monthly, and 
sunset time), and relative increment transformation to the LL 
frequency component. 

In both examples, standard neural networks based on the 
back-propagation learning algorithm in [34, Ch. 4] are used. 
The training, validation, and test processes in a three-way data 
split are used to determine and demonstrate the parameters in 
the model. All NNs are trained offline by using historical data 
with weights randomly initialized, and the training terminates 
when the stopping criteria is reached to be described in Exam
ples 1 and 2. These NNs are then trained online with the latest 
12 loads as explained in Section IV-C. 

Example 1: Consider the signal: 

y (t) = 100 sin (27rlOt) +20 sin (27r150t) + sin (27r200t) (9) 

where the signal y( t) is composed of a low frequency compo
nent 100 sin(27r10t), a medium component 20 sin(27r150t), and 
a high component sin(27r200t). The signal is similar to the ac
tualload in terms of relative amplitude and frequency. A total 
of 3600 data points (t, y( t)) were randomly generated: 

:9 (t) = y (t) + c: (t) (10) 

where t E [1, ... ,3600] and {c:(t)} were independent and iden
tically distributed normal noises with zero mean and unit vari
ance N(O, 1). The first one-third of data points were used for 
training, the second one-third of data for validation, and the last 
one-third of data for testing. 

A single NN without wavelet decomposition is compared to 
neural networks with two-level wavelet decomposition. The rel
ative increment transformation is not used for this example be
cause y( t) consists of three sine functions which are periodical, 
and there is no need to use this transformation to make {y(t)} 
stationary. Based on the training, validation, and test processes 
in a three-way data split, the number of hidden neurons for the 
standard NN method is set to be 11, and the numbers of hidden 
neurons for our method are set to be 8, 7, and 13 for H, LH, and 
LL NNs, respectively. For both methods, NN training processes 
stop when MAE thresholds (stopping criteria) are reached. From 
the test data set, the overall MAE and SD are, respectively, 1.73 
and 2.33 for standard NN method, whereas the overall MAE 
and SD are, respectively, 0.85 and 1.06 for our method. MAPE 
is not adopted since {y(t)} may have zero values. MAEs and 
SDs indicate that the predictions obtained from using two-level 
wavelet NNs are both closer to the true values in data series 
{y(t)} and have smaller standard deviations than the ones ob
tained using a single NN. 

Example 2: Wavelet neural networks with spike filtering are 
tested with system load data provided by ISO New England. 
The training period is from January 1,2007 to December 31, 
2007, tlle validation period is from January 1,2008 to June 30, 
2008, and the test period is from July 1,2008 to December 31, 
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TABLE I 
MAEs (MW) FOR MULTIPLE WNNs 

Min. WNN1 WNN2 WNN4 WNN6 WNNs WNN10 WNN12 
5 ·13,43 13.50 13,49 13,45 13,46 13.42 13,48 

10 19.90 19.97 19.95 19.97 19.94 19.90 19.99 
15 25.60 25.75 25.75 25.73 25.71 25.59 25.61 
20 31.56 31.68 31.79 31.73 31.72 31.55 31.57 
25 36.88 36.99 37.07 36.99 37.07 36.87 36.81 
30 42,48 42.65 42.75 42.66 42.70 42.46 42,40 

35 48.09 48.29 48.43 48.31 48.31 48.06 47.99 
40 53.83 54.09 54.18 54.05 54.05 53.79 53.66 
45 59.23 59.55 59.59 59.49 59.56 59.22 59.01 
50 64.74 65.18 65.21 65.16 65.21 64.73 64.55 
55 69.26 69.71 69.63 69.69 69.69 69.24 69.11 
60 74,40 74 .. 86 74.78 74.97 74.89 74.38 74.27 

2009. Ten cases are teste.d. Since there are many factors in set
ting the forecasting model, and each factor has multiple options, 
the number of possible combinations of options is very large. 
To have a practical way to demonstrate the appropriateness of 
options selected for individual factors, the configuration deter
mined through training, validation, and test processes is treated 
as the nominal configuration. Based on it, each factor is then 
examined in individual cases below. Cases 1-7 are for training 
and validation: Case 1 for micro and macro spike filtering, Case 
2 for spike filtering thresholds, Case 3 for decomposition levels, 
Case 4 for selecting Daubechies wavelets, Case 5 for padding 
strategies, Case 6 for date and time indices, and Case 7 for rela
tive increment transformation. Cases 8-10 are for testing: Case 
8 for test results and prediction interVal construction, Case 9 for 
comparing with ISQ-NE's method, and Case 10 for Monte Carlo 
simulations. 

To reduce computation time, Cases 3-7 are based on WNN I 

because its results are very similar to the individual results from 
other WNNs as reported in Table I, while the other cases are 
based on the 12 dedicated WNNs. For all the cases, there are 
three layers in all the neural networks: one input layer, one 
hidden layer, and one output layer. Through training, valida
tion, and test processes in a three-way data split, the numbers 
of hidden neurons are 6, 13, and 18 for H, LH, and LL NNs, 
respectively. They are not identical because the decomposed 
load components have different features. Based on testing, a 
single WNN is trained offline for 3 h (stopping criterion), and 
12 WNNs require a total of 36 h for training offline. 

Case 1: Spike filtering methods are tested with ISQ-NE's 
real-time load data. Results for multiple WNNs with the loads 
filtered by the micro and macro filters are compared to the ones 
with unfiltered loads, the loads only filtered by the micro filter 
in 4 s, and the loads only filtered by the macro filter. The results 
for 5- to 60-min outs in Table II show that both micro filtering in 
4 s and macro filtering improve MAEs and SDs. Furthermore, 
using the micro and macro spike filtering together produces the 
smallest MAEs and SDs, and these results are treated as nominal 
ones and will be used later in Cases 8 and 10 for comparisons. 

Case 2: To detect spikes by micro or macro filtering, three 
thresholds Tn, 'WI, and 'W2 should be determined. Based on ob
servation, spike magnitudes are usually greater than 40 MW for 
ISQ-NE's load data, the widths of micro spikes are less than 3 

TABLE II 
MAPEs (%), MAEs (MW), AND SDs (MW) FOR MULTIPLE WNNs IN 
MOVING FORECASTS WITH AND WITHOUT SPIKE FILTERlNG METHODS 

Min. 

5 
10 
15 
20 
25 
30 
35 
40 
45 
50 
55 
60 

Min. 

5 
10 
15 
20 
25 
30 
35 
40 
45 
50 
55 
60 

Min. 

5 
10 
15 
20 
25 
30 
35 
40 
45 
50 
55 
60 

With loads not filtered With loads only tlltered by the 
micro filter in four seconds 

MAPE MAE SD MAPE MAE SD 
0.10 15.56 17.77 0.09 13.56 16.24 
0.15 22.78 27.09 0.13 20.08 25.04 
0.23 35.56 41.94 0.17 25.95 32.47 
0.31 47.69 56.36 0.21 32.00 39.57 
0.38 57.06 68.12 0.25 37.46 46.47 
0.44 67.32 80.83 0.29 43.27 53.54 
0.53 80.05 95.49 0.32 49.09 60,40 
0.61 92.63 110.24 0.36 55.01 67.24 
0.68 103.96 123.73 0.40 66.60 73.90 
0.76 115.77 137.60 0.44 66,47 80.65 
0.79 121.35 142.87 0.47 71.16 85.83 
0.85 129.30 151.05 0.50 76.54 91.73 

With loads only filtered by the With loads filtered by the micro 
macro filter and macro filters 

MAPE MAE SD MAPE MAE SD 
0.09 13.52 16.19 0.09 13.49 16.03 
0.13 20.05 24.99 0.13 20.00 24.43 
0.17 25.92 32.41 0.17 25.65 30.71 
0.21 31.97 39.51 0.21 31.61 36.89 
0.25 37.42 46.40 0.24 36.88 42.97 
0.29 43.23 53.46 0.28 42,45 49.13 
0.32 49.04 60.34 0.32 48.05 55.20 
0.36 54.97 67.20 0.36 53.71 61.25 
0.40 60.56 73.80 0.39 59.06 66.87 
0.44 66.41 80.51 0.42 64.59 72,46 
0.47 71.09 85.67 0,45 69.14 77.85 
0.50 76,47 91.56 0.49 74.28 83.57 

TABLE III 
MAEs (MW) AND SDs (MW) FOR SPIKE FILTERlNG 

METHODS WITH DIFFERENT III VALUES 

m=45 m=50 m=55 m=60 
MAE SD MAE SD MAE SD MAE SD 
13.6 16.3 13.5 16.0 13.5 16.2 13.5 16.3 
20.0 25.0 20.0 24.4 20.0 24.9 20.0 25.1 
25.9 32.1 25.7 30.7 25.9 32.4 25.9 32,4 
31.8 39.1 31.6 36.9 31.9 39.7 32.0 39.5 
37.2 45.5 36.9 43.0 37.3 46.3 37.3 46.0 
42.8 52.1 42.5 49.1 43.0 53.2 43.0 52.7 
48.5 58.9 48.1 55.2 48.8 60.7 48.7 59.8 
54.3 65.5 53.7 61.3 54.7 67.9 54.6 66.6 
59.8 71.7 59.1 66.9 60.3 74.7 60.1 73.1 
65.5 78.1 64.6 72.5 66.0 81.5 65.8 79.6 
70.0 83.3 69.1 77.9 70.5 86.6 70.3 84.8 
75.2 89.1 74.3 83.6 75.9 92.3 75.5 90.6 

points, and the widths of macro spikes are less than 10 points. 
Through testing based on a three-way data split, the nominal 
values for m, 'WI, and W2 are set to be 50, 3, and 10, respec
tively. To partially validate this choice, different values of rn 
are examined when 'WI and 'W2 are fixed at their nominal values. 
MAEs and SDs in Table III show that the results with different 
rn values are quite similar, and the configuration with rn = 50 
produces the best forecasting accuracy. The same steps are sep
arately taken for the widths WI and W2, and 3 and 10 are chosen, 
respectively. 

Case 3: Wavelet decomposition results from zero level (a 
single NN without wavelet decomposition) to three levels are 
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Min. 

5 
10 
15 
20 
25 
30 
35 
40 
45 
50 
55 
60 

TABLE IV 
MAEs (MW) AND SDs (MW) FOR WNN 1 WITH 

DIFFERENT DECOMPOSITION LEVELS 

O-Level I-Level 2-Levels 3-Levels 
MAE MAE SD MAE SD MAE SD 
15.64 17.94 31.80 13.43 15.92 19.66 55.02 
24.83 25.54 35.46 19.90 24.40 27.16 57.66 
32.89 30.93 38.56 25.60 30.85 30.57 58.63 
40.24 36.47 42.44 31.56 37.19 36.46 61.16 
47.64 41.91 46.65 36.88 43.29 41.90 63.62 
54.93 47.18 51.42 42.48 49.47 47.55 67.42 
62.96 53.44 56.40 48.09 55.42 52.48 71.19 
70.78 59.58 61.62 53.83 6l.38 58.14 75.00 
78.52 65.25 67.63 59.23 67.08 63.42 79.94 
86.41 71.26 73.26 64.74 72.75 69.38 85.17 
94.06 78.20 79.49 69.26 78.12 74.06 89.05 
102.04 84.38 85.44 74.40 83.85 79.11 93.59 

TABLE V 
MAEs (MW) FOR Vi'NN 1 WITH DIFFERENT DAUBECHIES WAVELETS 

Min. Db2 Db4 Db6 Db8 Db12 Db20 
5 27.43 13.43 16.83 17.93 17.15 17.65 
10 29.88 19.90 25.51 25.66 25.57 26.25 

15 35.71 25.60 32.40 33.43 33.28 34.33 
20 39.59 31.56 39.09 39.70 39.97 41.05 

25 52.42 36.88 45.20 46.33 46.59 47.62 
30 56.03 42.48 51.40 52.89 52.90 53.63 
35 61.08 48.09 57.74 59.62 59.52 60.41 

40 66.42 53.83 64.80 67.40 66.74 67.90 

45 80.91 59.23 72.19 74.89 73.87 75.40 

50 85.71 64.74 79.68 83.02 81.34 83.58 

55 89.69 69.26 87.29 89.08 88.31 91.25 

60 95.39 74.40 94.93 93.87 94.27 97.23 

compared. MAEs presented in Table IV show that two-level 
wavelet neural networks produce the best forecasting accuracy. 

SDs for decomposition levels one to three show insignificant 
differences, and hence will not be given in Cases 4-7. 

Case 4: Based on the two-level wavelet decomposition, re
sults using different Daubechies wavelets (Db2-Db20) are com
pared and are partially reported in Table V. MAEs indicate that 
the Db4 gives the best prediction accuracy. This is consistent 
with the analysis in Section IV-B. 

Case 5: To handle distortions, different padding strategies are 
used, including zero padding, periodic padding with order one, 
and symmetrization padding. In Table VI, results using different 
padding strategies are compared, and MAEs show that the sym
metrization strategy gives the best prediction accuracy. 

Case 6: Beyond load inputs to NNs, the selections of time 
and date indices are investigated and reported in Table VII. The 
combination which includes the loads of the last hour (LD), the 
hourly index (HI), the weekly index (WI), the monthly index 
(MI), and the sunset time index (SI) gives the smallest MAEs 
when compared to other combinations. 

Case 7: Components with and without relative increment 
transformation applied are tested. The strategy using an LL fre
quency component with RI, and LH and H frequency compo
nents without RI produces the smallest MAEs (e.g., 75 MW for 
the 60-min out) when compared to the other strategies of using 
LL without RI, and LH and H with RI (e.g., 300 MW for the 
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TABLE VI 
MAEs (MW) FOR THE WNN 1 WITH DIFFERENT PADDING STRATEGIES 

Min. Zero Periodic Symmetrization 
5 7250.92 668.44 13.43 
10 7251.40 670.97 19.90 
15 7251.77 675.08 25.60 
20 7252.18 678.99 31.56 
25 7252.63 682.63 36.88 
30 7253.07 686.52 42.48 
35 7470.42 689.50 48.09 
40 7263.67 692.31 53.83 
45 7132.73 690.89 59.23 
50 6981.50 675.37 64.74 
55 6308.64 789.13 69.26 
60 7053.08 1481.67 74.40 

TABLE VII 
MAEs (MW) FOR WNN 1 WITH DIFFERENT TIME INDICES 

Min. 
LD LD+HT LD+HT LD+HT LD+HT+WT 

+WI +Wl+MI +MI+SI 
5 35.18 29.57 21.39 19.34 13.43 
10 56.64 46.10 32.46 29.08 19.90 
15 79.20 59.14 42.94 38.03 25.60 
20 103.78 72.01 52.56 46.06 31.56 
25 127.42 86.01 63.02 53.93 36.88 
30 151.52 100.10 73.84 62.08 42.48 
35 183.59 116.29 84.84 70.40 48.09 
40 220.04 136.21 100.10 83.61 53.83 
45 247.66 150.34 107.99 88.09 59.23 
50 285.25 172.55 125.81 102.34 64.74 
55 301.70 177.87 129.31 103.09 69.26 
60 328.09 191.38 140.44 111.l8 74.40 

TABLE VIII 
MASEs, MAPEs (%), MAEs (MW), AND SDs (MW) FOR OUR METHOD 

Min. MAPE MAE SD MASE 
5 0.09 12.52 14.61 0.23 
10 0.13 18.45 19.87 0.35 
15 0.16 23.72 24.67 0.45 
20 0.20 29.36 30.15 0.56 
25 0.24 34.49 35.48 0.65 
30 0.27 39.89 41.15 0.76 
35 0.31 45.36 46.48 0.86 
40 0.33 51.06 52.13 0.97 
45 0.35 56.32 57.52 1.07 
50 0.38 61.80 63.23 1.17 
55 0.42 66.06 67.77 1.25 
60 0.45 71.02 72.93 1.35 

60-min out), and using LL, LH, and H with and without RI 
(very large). 

Case 8: Cases 1-7 are for training and validation, and Cases 
8-10 are for testing. As shown in Table VIII, the small MAPEs, 
MAEs, and SDs are close to the nominal results (in the block 
with the loads filtered by the micro and macro filters) in Table II, 
indicating that the parameters are properly selected. Also, the 
MASEs for 5- to 40-min outs are less than one, indicating that 
our multistep forecasts are better than the one-step naive fore
cast. The MASEs for 45- to 60-min outs are slightly greater than 
one. This corresponds to the explanation in the beginning of 
Section V that multistep MASE values will often be larger than 
one as the forecasting horizon increases. 
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Forecasting Errors (MW) 
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Fig. 8. Box plots for forecasting errors for 5- to 60-min outs. 

To evaluate the errors for 5- to 60-min outs, box plots, as 
depicted in Fig. 8, are used to graphically depict errors through 
five-number summaries: sample minimum, lower quartile, 
median, upper quartile, and sample maximum [38]. The figure 
shows that forecasting errors for 5- to 60-min outs by our 
method have near zero medians, and box shapes are almost 
symmetric. The range, especially the outlier and inter-quartile 
ranges, however, gradually expand as the minute out increases, 
due to the fact that data uncertainty increases from 5 to 60 min 
in 5-min steps. 

To evaluate the error bias, average errors (the mean of the 
differences between the actual and predicted loads) for 5- to 
60-min outs are calculated to be from -2.1 MW to 0 MW. 
This range is relatively insignificant compared to the overall 
load range, from 9000 MW to 27000 MW. This indicates that 
the model is almost unbiased. Furthermore, the percentages of 
under and over forecasts are nearly 50% for both. 

To empirically construct prediction intervals, consider S-min 
outs as an example. At time t, historical 5-min errors (actual 
minus predicted loads) before time t are ordered. For a nominal 
coverage rate l-c~, e.g., a = 0.1, the lower and upper bounds 
of the 90% prediction interval are determined and then added 
to the forecast at time t to be the approximated prediction in
terval. For our testing, the errors from July 1,2008 to November 
30, 2008 (>40 000 errors) and the prediction are used to con
struct the prediction interval for t = 00:05 am on December 1, 
2008. The lower and upper bounds obtained are -112.75 MW 
and 104.52 MW, respectively, and the predicted load is 10619 
MW. When the error at 00:05 am is available, this new error 
and previous errors are then used together for t = 00:10 am. 
To quantify forecasting accuracy, this process repeats until the 
end of December. It turns out that 87.02% of actual load data 
falls within approximated prediction intervals (Le., actual per
centage coverage = 87.02%). This is close to 90%, indicating 
that approximated prediction intervals are reasonably accurate. 
The same steps are taken for 10- to 60-min outs, and similar re
sults are obtained. 

Prediction intervals can also be obtained based on an esti
mated distribution ofthe variable to be forecasted by using, for 
example, a modified bootstrap method as presented in [39] for 

TABLE IX 
MAPEs (%) AND MAEs (MW) COMPARING OUR 

METHOD'S RESULTS TO ISO-NE's RESULTS 

Min. 
ISO-NE's Method Our Method 
MAPE MAE MAPE MAE 

5 0.26 43.74 0.08 14.37 
10 0.30 50.68 0.13 21.57 
15 0.34 57.99 0.16 27.80 
20 0.38 64.58 0.20 34.17 
25 0.43 72.29 0.23 40.06 
30 0.48 80.95 0.27 46.44 
35 0.53 90.43 0.31 52.74 
40 0.60 100.76 0.35 59.21 
45 0.64 109.41 0.38 65.46 
50 0.70 119.12 0.42 71.83 
55 0.75 127.81 0.45 77.43 
60 0.81 138.33 0.49 83.54 

short-term load forecasting, or an adapted resampling method as 
presented in [40] for wind power generation forecasting. Since 
the method we used provided reasonably accurate results, these 
methods in [39] and [40] are not explored. 

Case 9: Results of our method and of ISO-NE's method in 
[3] reviewed in Section II are compared based on ISO-NE's real
time data. The forecasting period for comparison is from July 1, 
2008 to July 31, 2008. MAPEs and MAEs in Table IX show 
that our method produces smaller errors than ISO-NE's. This 
demonstrates that our method is significantly better than ISO
NE's. 

Beyond the comparison above, it is difficult to compare our 
results to others since there is no standard test data set for a fair 
comparison. Nevertheless, the following results have been re
ported in the literature: the MAPEs for a United States power 
utility [4] range from 0.4% to 1.1% for 20- 60-min outs in 
lO-min periods; the MAPEs for British electricity demand [20] 
range from 0.1 o/o-D.5% for 1- to 30-min outs in I-min periods; 
the average MAPEs for 12 5-min periods in the Ubatuba area 
in Brazil [18] are 2.62%, 0.39%, and 18.72% forARIMA, NN, 
and the adaptive neuro-fuzzy system, respectively; the MAPEs 
for a 5-min out for the state of New South Wales in Australia 
[25] are 0.27%, 0.28%, 0.33%, and 0.27% for least regression, 
least mean square, BPNN, and support vector regression, re
spectively. Since data features as well as forecasting resolutions 
and periods are different from paper to paper, and implementa
tion details are not open, it is difficult to evaluate individual per
formances. However, our method seems to be very competitive. 

Case 10: To test the robustness of our method, two sets of 
Monte Carlo simulations are performed each with N = 20 sim
ulations. The first set of Monte Carlo simulations is run with 
a random weight initialization. Since N simulations are inde
pendent, the mean /h and standard deviation IJ' are calculated 
for MAPEs, MAEs, and SDs. Results in Table X show that the 
means /hMAPE, /hMAE, and/hSD for 5-to 60-minouts are close 
to the nominal MAPE, MAE, and SD in the loads filtered by the 
micro and macro filters for all the cells, as reported in Table II. 
Also, the standard deviations IJ'MAPE, IJ'MAE, and IJ'SD are 
small. This indicates that our method is robust. 

The second set of Monte Carlo simulations is run with a 
random re-sampling step [35]. For example, time t is randomly 
selected from the test data set, and then historical data from 
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TABLE X 
MEANS AND STANDARD DEVIATIONS FOR MAPEs (%), MAEs (MW), 

AND SDs (MW) FROM MONTE CARLO SIMULATIONS WITH A RANDOM 
WEIGHT INITIALIZATION (WITH N = 20 SIMULATIONS) 

Min. JiMAPE (JMAPE I'MAE (J,\fAE fiso rJSD 

5 0.09 0.00 12.81 0.64 16.42 3.42 
10 0.13 0.00 19.29 2.27 21.59 2.76 
15 0.16 0.00 23.93 0.45 25.94 2.30 
20 0.20 0.00 29.56 0.47 31.19 1.99 
25 0.24 0.01 34.70 0.59 36.42 1.83 
30 0.27 0.01 40.17 0.74 41.97 1.80 
35 0.31 0.01 45.65 0.88 47.32 1.98 
40 0.35 0.01 51.36 1.06 53.01 2.29 
45 0.38 0.01 56.68 1.24 58.42 2.65 
50 0.42 0.01 62.21 1.47 64.14 3.09 
55 0.45 0.01 66.51 1.54 68.67 3.16 
60 0.48 0.01 71.51 1.67 73.82 3.36 

TABLE XI 
MEANS AND STANDARD DEVIATIONS FOR MAPEs (%), MAEs (MW), 
AND SDs (MW) FROM MONTE CARLO SIMULATIONS WITH RANDOM 

RE-SAMPLING STEPS (WITH N = 20 SIMULATIONS) 

Min. fiMAP£ Cf,HAPE fJlvME aMAE fiso (Jso 

5 0.09 0.00 12.43 0.81 13.58 4.38 
10 0.13 0.01 18.43 1.34 19.28 3.64 
15 0.17 0.01 23.75 2.01 24.60 3.32 
20 0.21 0.01 29.52 2.82 30.49 3.63 
25 0.24 0.02 34.76 3.54 35.94 4.10 
30 0.28 0.02 40.35 4.31 41.80 4.83 
35 0.32 0.03 46.20 5.44 47.45 5.92 
40 0.36 0.03 52.22 6.55 53.83 7.13 
45 0.40 0.04 57.74 7.72 59.26 8.35 
50 0.44 0.05 63.40 8.74 65.34 9.70 
55 0.47 0.05 67.74 9.29 69.72 10.18 
60 0.50 0.05 72.90 10.04 75.15 10.89 

one-year before t are used for training offline, and the loads 
one month after t are to be predicted. In comparison to the re
sults using a random weight initialization, results in Table XI 
show that the means fJM AP E, {tM AE, and {LSD for 5- to 60-min 
outs are close to the ones in Table X. The standard deviations 
iJ'MAPE, iJ'MAE, and iJ'SD are slightly larger than the ones in 
Table X for most of the cells, due to the complicated load fea
tures. However, the standard deviations for the random re-sam
pIing step are still small. This indicates that our method is ro
bust, and data sets are not sparse. 

VI. CONCLUSION 

This paper presents a method of wavelet neural networks 
with data pre-filtering to forecast very short-term loads 1 h into 
the future in 5-min steps in a moving window manner. The 
spike filtering methods remove spikes in real-time. This WNN 
method can capture the load components at different frequen
cies. Daubechies-4 with two-level decomposition is the best 
configuration, which balances the decomposed level, the filter 
length, and the minimum padding length for decomposition. 
Symmetrization is shown to be the best strategy to handle the 
distortion. Applying the relative increment transformation to 
load series enhances the load stationarity. Based on test results, 
12 dedicated wavelet neural networks are used to perform 
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moving forecasts every 5 min. Numerical testing shows ac
curate predictions with small standard deviations for VSTLF 
based on the data set from ISO New England. 
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