
IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 9, NO.1, JANUARY 2012 137

Improvement of Lagrangian Relaxation Convergence
for Production Scheduling

Roman Buil, Miquel Angel Piera, and Peter B. Luh

Abstract-It is widely accepted that new production scheduling
tools are playing a key role in flexible manufacturing systems to
improve their performance by avoiding idleness machines while
minimizing set-up times penalties, reducing penalties for do not
delivering orders on time, etc. Since manufacturing scheduling
problems are NP-hard, there is a need of improving scheduling
methodologies to get good solutions within low CPU time. La
grangian Relaxation (LR) is known for handling large-scale
separable problems, however, the convergence to the optimal
solution can be slow. LR needs customized parametrization,
depending on the scheduling problem, usually made by an expert
user. It would be interesting the use of LR without being and
expertise, i.e., without difficult parameters tuning. This paper
presents innovative approaches on the LR method to be able to
develop a tool capable of solve scheduling problems applying
the LR method without requiring a deep expertise on it. First
approach is the improvement of an already existing method which
use Constraint Programming (CP) to obtain better primal cost
convergence. Second approach is called Extended Subgradient
Information (ESGI) and it speed up the dual cost convergence.
Finally, a set of step size rules for the Subgradient (SG) method are
compared to choose the most appropriate rule depending on the
scheduling problem. Test results demonstrate that the application
of CP and ESGI approaches, together with LR and the selected
step size rule depending on the problem, generates better solutions
than the LR method by itself.

Note to Practitioners-Production scheduling tools are one of the
keys in flexible mannfacturing systems to improve its performance.
These tools are usually based on optimization methods, as could
be the Lagrangian Relaxation. The problems of using optimiza
tion methods are the need of time to get the solution, and the need
of a high-specialized user to tune them. Therefore, optimization
methods must be improved to use less time to obtain solutions and
to do not need high-specialized users. This paper was motivated by
these needs: reducing the CPU time when scheduling operations
in production planning to permit quick replies to real-time per
turbations into production processes; and making easier the use of
production scheduling tools. This paper suggests new approaches
for the Lagrangian Relaxation (LR) method applying Constraint
Logic Programming (CLP) and improving the multipliers calcula-

Manuscript received February 12, 2011; revised July 20, 2011; accepted
September 03, 2011. Date of publication September 26,2011; date of current
version December 29, 2011. This paper was recommended for publication
by Associate Editor C. Chu and Editor Y. Narahari upon evaluation of the
reviewers' comments. This work was supported in part by the CICYT Spanish
Program TRA2008-05266trAIR and in part by the AGAUR (Generalitat de
Catalunya) Program 2009 SGR 629.

R. Buil and M. A. Piera are with the Department of Telecommunications and
Systems Engineering, Universitat Autonoma de Barcelona, Bellaterra 08193,
Barcelona, Spain (e-mail: roman.buil@uab.cat; miquelangel.piera@uab.cat).

P. B. Luh is with the Department of Electrical and Computer Engineering,
University of Connecticut, Storrs Mansfield, CT 06269-2157 USA (e-mail:
peter.Iuh@uconn.edu).

Color versions of one or more of the 'figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.11 09trASE.2011.2168817

tion (inside the Subgradient method) during the iterations to speed
up the convergence of the LR method and make it easily tuned.
Thus, the CPU time to find a solution is reduced and the results
show that the use of the approaches reduces the needed knowledge
(about the LR method application) to correctly tune the parame
ters to obtain good solntions. Therefore, an industry would be able
to react to perturbations in less time and without a high-special
ized user.

Index Terms-Constraint programming, Lagrangian relaxation
(LR), production planning, scheduling.

I. INTRODUCTION

T HE increasing demand for on-time delivery of products
and low production cost is forcing manufacturers to seek

effective schedules. High-quality schedules are important to
manufacturers in today's time-to-market competition because
they can improve delivery performances and they can reduce
inventory costs. However, obtaining a high-quality schedule
within an acceptable CPU time is difficult because most man
ufacturing scheduling problems are NP-hard. Given a set of
jobs with different number of operations each one and given a
set of finite production resources, a manufacturing scheduling
problem consist on the assignment of these operations to
production resources under certain constraints and optimizing
some objective function.

Lagrangian Relaxation (LR) was developed to solve manu
facturing scheduling problems in [1] for a carefully established
separable formulation. The LR approach is an iterative method
which is used to divide a NP-hard problem into non-NP-hard
subproblems by relaxing the coupling constraints through the
Lagrange multipliers. These subproblems can be efficiently
solved (which is done each iteration), and from their solu
tions, heuristics can be used to find a feasible schedule of the
original problem. This process of finding a feasible solution
is done every few iterations to obtain a feasible cost for the
original problem. The best feasible cost is used to estimate
the optimal dual cost, and it is also used to determine the
step sizes to maximize the dual function. At the end of such
multiplier updating iterations, the heuristic is applied again
and the best feasible solution is chosen as the solution to the
original problem [1]. Unfortunately, this method do not always
provides good feasible solutions because LR convergence is
very sensitive to different parameters and highly dependent on
problem characteristics [2]. In the authors opinion, this fact
constrained the widely use of LR as optimization method for
scheduling problems because the results depend on how the
parameters are tuned.

1545-5955/$26.00 © 2011 IEEE

138 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 9, NO.1, JANUARY 2012

Constraint Programming (CP) is a paradigm tailored to hard
search problems [3], such as manufacturing scheduling prob
lems, and can be used when the problem is written as a Con
straint Satisfaction Problem (CSP). A CSP consist of a set of
variables, a domain for each variable specifying the values to
which the variable may be assigned, and a set of constraints on
the variables, restricting the values that they can simultaneously
take [4]. This set of domains is the search space for the solution.
This space can be reduced either when a variable is instantiated
or when the domain of a variable is cut. CP guarantee solution
feasibility due to the satisfaction of constraints. Although a man
ufacturing scheduling problem can be defined as a CSP, since CP
may not be able to take advantage of the problem structure to
decompose it into subproblems. Consequently, the search space
could become too large and to find the optimal solution may re
quire nonfeasible CPU time.

A method combining LR and CP was presented in [5], and its
results are better than results of the LR method by itself. This
method applies CP to find feasible solutions from the unfeasible
ones, at some iterations. Thus, it improves the convergence of
the primal cost if the parameter which determines the number of
iterations between each CP application is properly tuned. After
the analysis of the LR and CP method results, authors concluded
that better performance on convergence can be obtained if dual
cost is increased at the same time that primal cost is decreased,
and this is the reason of a new modification on the LR method.

Thi.s paper presents a new approach called Extended Subgra
dient Information (ESGI) which tries to improve the dual cost
at the iterations where dual cost decrease from the previous one.
If dual cost can be improved by obtaining a new solution with
dual cost greater than the dual cost of the solution at iteration
n, this solution updates the solution of iteration n + 1, and the
method continues from it.

In addition to this approach, the CP approach is applied using
new constraint structure which ensures a better performance
when finding feasible solutions. Thus, the search within a CP
iteration is less time consuming than the search using previous
constraint structure.

Although CP and ESGI approaches contribute to obtain better
solutions using LR, there is still the need of finding the appro
priate step size rule for each type of scheduling problem. There
fore, this paper also presents different step size rules for the
multipliers updating process. Before applying CP and ESGI, the
LR method is used to test selected step size rules with minimal
tuning because the idea is not to get the best possible solution
of tested problems, but to improve the convergence of the LR
method using the best step size rule, CP and ESGI. Usually, the
rule with best performance will be chosen; however, different
rules are selected in test results of this paper to show the pos
sible impact of CP and ESGI on the solutions quality.

This paper is organized as follows. Section II presents the
problem formulation, which is needed to explain the methods.
The LR method is presented in Section ill, and Section IV de
scribes the LR and CP method. Section V presents the ESGI
which improves the dual cost convergence, and Section VI in
troduce the tested step size rules. Test results are presented in
Section VII and, finally, Section VIII presents the conclusions
and future work.

II. PROBLEM FORMULATION

As mentioned before, LR is known for handling separable
problems. The particular case used for this paper is a job shop
scheduling problem which is structurally separable.

Following the formulation presented in [1] and [5], the
problem is to schedule N parts on H types of machines with
time horizon K to minimize a weighted tardiness and earliness
criterion [6]. Each machine type h, (h = 1,2, , H) has
Mkh available machines at time k, k = 1,2, ... , K, and
Ji operations are required for the completion of each part i
(i = 1,2, ... ,N). Operationj ofparti is denoted as (i,j).
Each operation (i, j) is performed on a machine of a given ma
chine type, and this machine type selected to process operation
(i, j) is denoted as h ij , and the set of machine types capable
to perform operation (i,j) is denoted by Hij . The decision
variables of the scheduling problem are the beginning times of
all operations {bij } and the machine types selected to perform
each operation {hij}. This discrete-time, integer programming
formulation and the solution methodology developed in this
paper are applicable even if some parts are not available at time
0, even if setup times are considered, and even if stock rupture
or other alterations are introduced. However, for simplicity,
setup time, stock rupture or other alterations are not considered
in this formulation. The objective functions and constraints are
presented next.

Objective Function: The scheduling goal of on-time delivery
for individual parts is modeled as penalties on part delivery tar
diness Ti = max[O, Ci - dil (where Ci is the completion time
of part i and di is the due date of part i); and as penalties
on releasing orders too early, Ei = max[O, dbi - bd (where
db i = di + 1 - L:j tTjh is the desired beginning time, bi is the
beginning time of part i, and tijh is the minimum processing
time of operation (i, j) in machine type h E Hij). The objec
tive function of the problem is

(1)

where Wi and (3i are weights associated with tardiness and ear
liness penalties. The square on tardiness reflects that a part be
comes more critical with each time unit passing its due date. The
problem is to minimize (1) subject to the following constraints
and requirements.

Parts Availability: Each part is available at a certain unit time
kiD, kio = 1,2, ... ,K. This set of constraints is not used if all
parts are assumed to be available at time °

biD 2: kiD, i = 1, ... ,N. (2)

Processing Time Requirements: For each part, the processing
of each operation requires a machine of a specific type for some
prespecified units of time, and must satisfy the following pro
cessing time requirements:

Cij = bij + tijh - 1, i = 1, ... ,N; j = 1, ... , Ji (3)

where Cij, bij, and tijh represent, respectively, the completion
time, the beginning time and the processing time of (i, j). The
h in tijh represents the machine type where the operation is
processed.

BUlL et al.: IMPROVEMENT OF LAGRANGIAN RELAXATION CONVERGENCE FOR PRODUCTION SCHEDULING 139

Operation Precedence Constraints: Each operation may be
started only after the completion of its preceding operation

Cij + 1 ::; bij+l, i = 1, ... ,N; j = 1, ... , Ji - 1 (4)

where bij+l represents the beginning time of (i,j + 1).
Machine Capacity Constraints: There is a number of pos

sible available machines for each machine type and they deter
mine the capacity for each machine type. The number of oper
ations assigned to machine type h at time k should be less than
or equal to Mkh, the number of machines available at that time

L 8ijkh ::; Mkh, k = 1, ... ,K; h = 1, ... ,H (5)
ij

where 8ij kh is a 0-1 variable and equals 1 if (i, j) is being pro
cessed by a machine of type h at time k; it equals 0 otherwise.
The values ofthese variables, 8ijkh , are determined once the be
ginning times bij of all operations are decided.

The problem is to minimize (1) through selecting appropriate
machine types and beginning times, subject to constraints
(2)-(5). Note that parts availability, precedence constraints and
processing time requirements relate to individual jobs, and the
objective function is also jobwise additive. Only capacity con
straints couple across jobs and malce the problem intractable.
This formulation is thus separable.

III. LAGRANGIAN RELAXATION (LR) METHOD

The complexity of the scheduling problem motivates the use
of decomposition techniques. LR has been used by Luh and his
research team in [1], [5]-[7] and in other publications to achieve
good decomposition of scheduling problems relaxing one or
more sets of constraints. The formulation presented in Section II
can be decomposed into partwise subproblems by just relaxing
the coupling machine capacity constraints. The following sub
sections present the different parts of the LR method.

A. Problem Decomposition

As it has been presented in the LR framework [6], the ma
chine capacity constraints (5) are relaxed by using non-negative
Lagrange multipliers 7rkh, and the relaxed problem is obtained
as

minL, with
bij

L == L [WiTl + {3i Ei + L 'irkh (L.: 8ijkh - Mkh) 1 (6)
, kh 'J

subject to (2)-(4).
Since the formulation is separable, for the given set of mul

tipliers it is possible to extract a minimization subproblem for
each part

min Li , with
b'ij,hij

Li == wiTl + {3i E i + L [i: 'irkhij] (7)
j k=bij

subject to (2)-(4).

Note the fact that 8ijkh = 0, \:Ih =1= h ij is used and hij is the
machine type selected to process operation (i,j).

Each subproblem is to schedule the operations of a single part
to minimize its tardiness and earliness penalties and the costs for
using machines. These subproblems can be effectively solved
by using Dynamic Programming (DP) (see Section III-B). Let
Li denote the minimum subproblem cost of part i with given
multipliers, the high-level Dual problem is then given by

maxq, with
7rkh

q == - L'irkhMkh + LLi
kh

(8)

where 'irkh ~ 0, \:Ih, \:Ik. Let q* denote the optimal dual cost.

B. Solving Subproblems

It has been shown in [6] and [8] that each part subproblem is
a multistage optimization problem, and can be efficiently solved
by using DP with pseudo-polynomial complexity. In this paper,
the Backward Dynamic Programming (BDP) algorithm is used.

The BDP algorithm talces the beginning times and machine
types selected for operations as decision variables and starts
with the last stage of a job. The cumulative costs are obtained
recursively and subject to operation precedence constraints (4),
processing time requirement constraints (3), and parts avail
ability constraints (2). The algorithm compute the cost of the
last operation (i, Ji) for all possible bi,Ji and hi,Ji

Ci,Ji

Vi,Ji (bi,Ji , hi,J,) = wiTl + L 7rkhi,Ji (9)
k=bi,Ji

then, moves backward until the first operation. Operations (i, j)
with j = 1 ... Ji - 1 are obtained recursively solving

Vij(bij,hij) = min { i: 'irkhij + Vi,j+I(bi,j+I,hi,j+l)}
k=bij

(10)
and operation (i, 1) is obtained solving

{
Cil }

ViI (bil , hiI) = min (3i Ei + L 7rkhil + Vi2(bi2 , hi2) .
k=bi1

(11)
The function Vij (bij, h ij) is the cumulative cost for all

operations including and succeeding (i,j), and (wiTl +
",Ci,Ji) ",Cij d ({3 E + ",Cil)
wk=bi,J' 7rkhi,Ji ' L..k=bij 7rkhij' an i i wk=bil 7rkhil
for j =' 1, are the stagewise costs. The optimal subproblem
cost Li is then obtained as the minimal cumulative cost at the
first stage. Finally, optimal beginning times and machine types
selected for operations can be obtained by tracing forwards the
stages.

Multipliers must be fixed before solving subproblems, there
fore, they are updated each iteration (see Section III-C) before
BDP. Multipliers, beginning times and machines assignation
form a solution of the dual problem.

C. Solving the Dual Problem

To solve the dual problem related to (8), the sub gradient (SG)
method is used [9], [10].

140 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 9, NO.1, JANUARY 2012

Given an initial set of multipliers 7f2h' the subproblems are
solved individually and beginning times b?j at the first iteration
are obtained. At the n + 1 iteration, the multipliers are updated
according to

(12)

where sn is the step size at the nth iteration, and gn is the sub
gradient of q at the nth iteration. The subgradient component of
machine type h at time k is given by the capacity constraints as

gn = 9 (bij) = L Oijkh - Mkh
ij

(13)

Update multipliers

I Coordination I
L--;======---",::::::::::::::::::~Decompositi;:::on-,------:--=~_.,--__ -,

Part subproblem solved by Part subproblem solved by
dynamic programming dynamic prograInming

Usually run heuristics
but CP every few

ite(ations

CP to find ~le best
feasible schedule,

and cal cui ate % gap

where bij are the beginning times at iteration n. The step size Fig. I. Schema of the LR and CP method.

sn is determined by

sn _ O'.n(q* - qn)
- IIgnl12 ,

(14) when a fixed number of iterations is reached. The equation to
evaluate these parameters are defined as follows:

where q* is the optimal solution of (8), qn is the dual cost ob
tained at iteration n, and an is a parameter which can change
over iterations.

In reality, q* is not known. Therefore, an estimated it is used.
This it is taken as an upper bound of the optimal dual cost q* ,
and is obtained by constructing a feasible schedule applying a
simple heuristic.

It can be said that step size consists in two parameters:
One depends on the evolution of the problem, which is
(q* - qn)/llgnIl2, and the other one depends on a previous
fixed rule, and it is an. Section VI present some step size rules
used as an for the testing results.

D. Constructing Feasible Solutions

The solution of the dual problem is generally an infeasible
solution of the scheduling problem (primal problem) because
some capacity constraints (5) might be violated since they are
relaxed. Otherwise, parts availability constraints (2), processing
time requirements (3), and operation precedence constraints (4)
are always satisfied in view of the way subproblems (7) are
solved. To construct a feasible solution, the algorithm presented
in [1] is applied where a list is created by arranging all the op
erations in the order of the beginning times of dual solution.
Operations are then scheduled according to the list as required
machines become available. A greedy heuristic based on the in
cremental change in the cost function J (1) is used to decide
which operation(s) should be delayed when some capacity con
straint is violated. If these delays cause precedence constraints
violations, the subsequent operations of the delayed ones vio
lating precedence constraints are also delayed by one time unit.

E. Iterative Method

As mentioned before, LR is an iterative method. At each itera
tion, multipliers are updated, subproblems are optimally solved
to obtain dual solutions, and primal cost is updated by heuristics
as appropriate.

An iterative method always needs a stop criteria. The pre
sented method stops either when step size becomes too small,
when the distance between qn and q* becomes too small, or

117f~:1 - 7fkh II ::; ~ (15)

Maximum number of iterations = n (16)
(fj* _ qn)

GAP(%) = n * 100::; Gap Limit (17)
q

where GAP denote the relative distance between fj* and qn. n,
Gap limit and ~ are fixed depending on the problem.

IV. LR AND CP METHOD

As presented in [5] CP is used during the iterative LR
method to find feasible solution using Time Windows (TWs)
constructed around the unfeasible solutions. At the end of the
iterations CP is also used but with different TW. Fig. 1 presents
the schema of the method.

A. Time Windows Construction

As presented in Section III-B, for a given set of multipliers,
subproblen:s are optimally solved one by one, and these sub
problems solutions usually are an unfeasible solution for the
original problem. TW [bijlow' bijhi9hl around subproblems
solutions are constructed, at the nth iteration, to control the
rescheduling of operations. The TW bounds are driven so that
the cumulative costs of the operation at the lower bound (biJ•) low
and at the upper bound (bijhi h) are within c-neighborhood of
the optimal cumulative cost, f.e.,

bijlow = min {klk ::; bij andVij(k',hij)

::; (1 + cn)Vi~j (bij, hij) for any k',

k ::; k' ::; bij} ,

bijhi9h = max {klk ~ bij and Vi''J(k', hij)

::; (1 + cn)Vij (bij, hij) for' any k',

k ::; bij ::; k' ::; k} (18)

where bij is the beginning time of operation j of job i at iteration
n; Vij(k, hij) is the cumulative cost of operation j of part i
performed in a machine of type hij at time slot k, at iteration n;

BVIL et al.: IMPROVEMENT OF LAGRANGIAN RELAXATION CONVERGENCE FOR PRODUCTION SCHEDULING 141

(a) (b) (e)

Fig. 2. Contour lines of dual cost and possible situations for consecutive iterations.

and en > 0 is a parameter which value is determined depending
on the previous use of CP

{
en p, if previous use of CP finds a solution

cn +1 = en / p, if previous use of CP does not find a
solution

(19)
where n is the iteration number and p is a parameter such that
O<p<l.

Values for cO and p by doing some preliminary experiments.
cO use to be as small as possible taking into account that should
be large enough to define time windows containing some solu
tion. However, it should also made time windows small enough
to do not be too large, because large time windows implies large
search space which difficult the finding of solution. p = 0, 9 or
p = 0, 95 is usually fixed to resize time windows between two
successive uses of CPo Thus, there are not large variations in the
size of these time windows.

Besides using this c, minimum and maximum length for TW
can be fixed if previous experiments have given this knowledge.

B. Constraint Programming

A CSP consist in a set of variables with their domains and
with constraints on them. A CSP must be defined each time CP
is used in the LR and CP method, and the one defined for the
problem presented in Section II is the following.

• Decision variables: bij, hij, Vi, Vj.
• Domains: bij :: 0 ... K, hij E Hij , Vi, Vj, where bij ..

O ... K means that bij can take values from 0 to K (the
largest time unit).

• Constraints: part availability constraints (2), processing re
quirements constraints (3), precedence constrains (4), ca
pacity constraints (5), and the following time window con
straints based on (18)

bn < bn
lOWij - ij'

where n is the iteration.

Vi,

Vi,

Vj,

Vj

(20)

(21)

A CSP can also include a cost function and a domain
bounding this cost. For this problem, the cost function is J,
defined in (1), and its domain is

(22)

If this In exists, q* is updated, otherwise, q* will not change.
When iterations stop, the last unfeasible schedule generated by
LR is used to construct the final TW, which are quite larger than
the TW used during the iterations. In is minimized to find the
best solution within these TW instead of to search just a feasible
solution as is done during the iterations.

A Const:r:aint Logic Programming (CLP) software system
called ECUPse is used to perform the CP approach. ECUPSe
is largely backward-compatible with Prolog and supports
different programming languages. It also provides several
libraries of constraint solvers which can be used in application
programs. One of these libraries permit the implementation of
the capacity constraints (5) presented in this paper. Therefore,
the implementation of the capacity constraints made by the au
thors of this paper in [5] is replaced by this new implementation
developed by the ECUPse development team. Robustness and
propagation of value assignments are improved and it becomes
in better convergence of the method.

The CP search could be too much time consuming, therefore,
a maximum CPU time is fixed for that search to do not overly
increase the total CPU time. Due to the definition of the CSP,
the finding of a solution implies a improve of the primal cost
which means better convergence and less CPU time.

The ideal situation is to be able to fix the number of itera
tions between each CP use for each type of problem, or to use
a variable number depending on some rules. However, these
results (see Section VII) include comparative tables with dif
ferent amounts of iterations. Test with best performance fixes
this number of iterations for test applying CP and ESGI together
with the LR method.

V. EXTENDED SUB GRADIENT INFORMATION

The LR and CP method converges faster than the LR method
because primal cost is decreased faster by using CPo If the in
creasing of the dual cost could be also speeded up, then the con
vergence of the method would be even better.

Analyzing the evolution of the dual cost during iterations, it is
observed that dual cost do not increases its value every iteration.
However, since the dual function is piecewise linear concave,
in some situations it is possible to find better dual solutions on
the SG direction, and this is the objective of ESGI approach.
Fig. 2 shows the three different possible situations on the dual
cost contour lines. n and n + 1 denote the point of the dual
solution at iteration n and at iteration n + 1, respectively. The
possible situations and their consequences are the following. .

• The best situation is to get greater dual cost at iteration
n + 1 than at iteration n, as Fig. l(a) shows. In this case,
LR continues.

• In Fig. 2(b), the dual cost of iteration n + 1 is less than at
iteration n; and there is no point on the SG direction with
dual cost greater than the dual cost at iteration n. In this
case, LR also continues.

• Finally, Fig. 2(c) present the case where a new point solu
tion with greater dual cost than the dual cost at iteration n
and n + 1 can be found. This is the case when dual solu
tion of iteration n + 1 is updated by this new solution with
better cost.

142 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 9, NO, 1, JANUARY 2012

The idea of the ESGI is to find the best dual solution on the SG
direction and between the point of the iteration n and the point
of iteration n + 1 (interval called segment); however, this search
would be too much CPU time consuming because all the sub
problems should be solved for each possible point on the SG
direction, The current ESGI just evaluates one point and if the
dual cost of the solution in this new point is greater than the
dual cost at iteration n, the new solution substitutes the solu
tion of iteration n + 1 and the LR method continues from this
new solution (set of multipliers, beginning times, and machines
assignation). Otherwise, if the dual cost of the solution in this
new point is less than the dual cost at iteration nand n + 1, the
LR method continues from the solution at iteration n + I,

Current testing results (Section Vll) check one point on the
segment, and this point is calculated using a new parameter
(0 < (J' < 1) which multiplies the step size sn. This (J' takes just
one fixed value during all the iterative method, which is taken
from 0.1 to 0.9 using 0.1 intervals. The comparative results with
different values for (J' permit to select the value with best perfor
mance. The selected (J' is used for the final test which applies
LR, CP, and ESGI.

VI. STEP SIZE RULES

As mentioned in Section ill-C, different rules are used to de
termine the value of the parameter an of (14). Reference [10]
presents different step size rules which they use as step size sn in
(14). In this paper, the value of (q* - qn)/llgnI12 is added to the
step size rules defined in [10]; therefore, an takes these (ules.
Additionally, other rules are also tested taking into account that
an must satisfy 0 < an < 2. All the used rules are presented
below and n indicates the number of the iteration.

a) an = hn, where h is a constant close to 2.
b) an = h1+Ln/pJ, where h is a constant close to 2, and

p is a constant, which indicates the number of iterations
between each decrease of an.

c) an = an-l * h, if dual has not been improved in iteration
n -1,
an = an-l * ((3 - h)/2), if dual has been improved in
iteration n - 1,
where h < 1, ao = h and an = 2 * h if an ~ 2 is
obtained.

d) an = an-1 * h, if dual has not been improved in iteration
n -1,
an = an-dh, if dual has been improved in iteration
n -1,
where h < 1, ao = 2 * h and an = 2 * h if an ~ 2 is
obtained.

e) an = an-l * h, if dual has not been improved in iteration
n -1,
an = an-I, if dual has been'improved in iteration n - 1,
where h < 1, ao = 2 * h and an = 2 * h if an ~ 2 is
obtained.

f) an = h, where h is a constant.
g) an = h/llgn 112, where h is constant and gn is the subgra

dient introduced in Section ill-C.
h) an = a/(b + n), where a> 0, b ~ 0, and an satisfies

00

L a~ < 00,

n=l

00

Lan = 00.

n=l

i) an = a/...;n, where a > 0 and an satisfies

00

lim a~ = 0, "" an = 00.
n-too L...J

n=l

The idea is to select one of these rules for a type of scheduling
problem and use it when the LR method is applied together with
CP and ESGI. In this paper, all the rules are compared solving
the problems applying the LR method. Some of these rules are
selected later on to be used for the rest of the tests made at
Section VII.

VII. TEST RESULTS

The LR method and the approaches have been imple
mented by using the objective programming language C++
and ECLipse. The main program is developed by using C++,
and when CP is needed, C++ establish the communication
with ECLipse, and the Prolog algorithm for the problem is
executed. The results are saved into C++ variables and used by
the C++ main program. Presented testing have been performed
on a Intel core 2 Duo, 2.26 GHz Macbook with 4 GB of RAM
and Mac OS X System. No advanced search strategies have
been used for the CP approach; even so, a simple backtracking
is enough for these tests after the constraints implementation
improvement.

Three job shop scheduling problems have been used for these
tes!s. A quite simple job shop scheduling problem with due
dates presented in [5] is used for Example 1. This first example
compares different results depending on the initial solutions ob
tained by using LR and all the implemented step size rules.
Three different LR tests with different final GAP and number
of iterations are selected to show the impact of the CP approach
(Option 1), the ESGI approach (Option 2), and both together
(Option 3) with LR, depending on the quality of the LR solu
tion. Thus, selected tests are the following.

• The one with less number of iterations and reasonable
GAP.

• One with reasonable GAP and whatever amount of itera
tions.

• One with GAP higher than the Gap Limit defined by (17)
and more iterations than the other selected tests.

For Example 2, a more complete job shop scheduling problem
with due dates taken from [1, Table IV] is used. In that case, two
step size rules are selected.

• The one with less GAP.
• One reaching the maximum number of iterations and GAP

greater than GAP Limit (to test if it is possible to get good
solutions if the LR parameters tuning is not good at all).

The approaches are then compared using both rules, as made in
Example 1.

Example 3 presents results of ten different instances ran
domly generated by the authors. Two tests are made for each
instance, one using the LR method, and another one using
Option 3 (LR, CP, and ESGI). Step size rules and CP and
ESGI configurations are randomly fixed for each instances. LR
parameters .are fixed and equal for the ten instances.

BUlL et al.: IMPROVEMENT OF LAGRANGIAN RELAXATION CONVERGENCE FOR PRODUCTION SCHEDULING 143

TABLE I
RESULTS OF EXAMPLE 1 USING LR METHOD

WITH DIFFERENT STEP SIZE RULES

Step Num. CPU Time Primal GAP
Size of iter. (sec) Cost (%)

a 335 0 643 5.93
b.OS 162 0 640 4.92
b.20 148 1 640 4.92
b.50 139 0 640 4.92

c 443 1 655 8.99
d 443 1 655 8.99
e 443 1 655 8.99
f 570 1 651 5.00
g 307 1 652 4.99
h 415 0 655 7.73

295 0 655 4.97

A. Example 1

The job shop schedule problem used for this example con
sists in two different types of machines with a capacity of three
parallel resources for type 1 and a capacity of two parallel re
sources for type 2. There are 16 jobs with three operations each'
one, operations 1 and 2 must be processed in machine type 1 and
operation 3 in machine type 2. Each operation has its process
time and there are tardiness weights taken fixed values from 10
to 100 and earliness weights taken fixed values from 1 to 10.
Due dates for each job are distributed along the time without
overcome the time horizon, which is 50 time units. All parts are
assumed to be available at time 0 for simplicity.

The parameters fixed for the stop criteria ((15)-(17)) are

~ = 0.01, n = 1000, Gap Limit = 5%.

The LR method is applied using different step size rules. All
rules are applied once but rule (b) has been applied three times
with different values of p (p = 5, 20, 50). Table I shows the
results. Column "Step Size" indicates the step size rule, using
b.05, b.20, b.50 for rule (b) with different values of p, and the
corresponding index for the other rules (see Section VI). The
rest of the columns are in order: number of used iterations, CPU
time consumed, final primal cost, and final GAP. To comment
the results, tests are named using the index of the applied step
size rule.

It is easy to see that stop criteria of test a, c, d, e, and h is
the proximity of the multipliers of consecutive iterations (15);
and all the others tests have gotten a GAP less than the fixed
GAP Limit (17). There is no test reaching the total number of
permitted iterations (16).

The selected tests following the explanation in Section VIT,
and keeping the order are: b.50, i and h. Therefore, Option 1 ... 3
are applied to solve the problem using the step size rules (b.50),
(i) and (h). The results are compared to show the impact and
benefits of the approaches and their combination.

1) Step Size Rule (b.50): In Table n, the number of iter
ations decrease as CP is used most often, except when using
CP every five iterations and at each iteration. Analyzing the ob
tained GAP's, there is an increase of GAP's inversely propor
tional to the decrease of iterations. This proportion appears be
cause as faster decreases the primal cost (which converge to the
optimum in all the test in Table II using CP) the more difficult it
is to increase the dual cost, due to the use of these primal cost for

TABLE II
RESULTS ApPLYING LR AND CP METHOD (OPTION 1)

USING STEP SIZE RULE (b. 50) ON EXAMPLE 1

Iter. Num. CPU Time Primal GAP
CP of iter. (sec) Cost (%)

0 139 0 640 4.92
40 121 2 634 4.45
30 111 2 63.4 4.45
20 95 3 634 4.62
10 76 4 634 4.97
5 81 10 634 4.97
1 95 57 634 4.97

TABLE III
RESULTS ApPLYING LR AND ESGI (OPTION 2)

USING STEP SIZE RULE (b. 50) ON EXAMPLE 1

Num. CPU Time Primal GAP
()"

of iter. (sec) Cost (%)
0:1' ·"13B.c'. 0·.·· 64B

..

4;.92
0.2 255 (j 655 4.97
0.3 254 0 655 4.97
0.4 249 1 655 4.97
0.5 243 0 655 4.97
0.6 242 1 655 4.97
0.7 244 0 655 4.97
0.8 239 0 655 4.97
0.9 235 0 655 4.97

TABLE IV
RESULTS ApPLYING LR, CP AND ESGI (OPTION 3)

USING STEP SIZE RULE (b. 50) ON EXAMPLE 1

Iter.
CP

30 0.1

Num.
of iter.

107

CPU Time
(sec)

2

Primal GAP
Cost (%)

634 4.45

the multipliers update during the iterations [see q* as approxi
mation of q* in (14)]. Since CPU times are similar, but when
using CP at every five iterations and every single iteration, it is
necessary to make a balance between thenumber of iterations
and GAPs to decide which is the best result when using CP (Op
tion 1), and select it for its use in Option 3. The authors consider
the minimum GAP with less number of iterations as the best re
sult, if the CPU time is reasonable. Thus, CP every 30 iterations
is selected.

Table III presents the results when applying Option 2, and
they show that ESGI do not influence too much in the final re
sults if just LR already gets good solutions in a small number of
iterations when the problem is quite simple. A (J value has to be
selected to used it in Option 3. In this case, (J = 0.1 is the test
with the minimum number of iteration and it is selected.

Results of Option 3 presented in Table IV improve the results
of Option 2 because a smaller GAP is gotten with less iterations.
The obtained GAP is the same than in Option 1 using less iter
ations. Using Option 3, the optimum primal cost is obtained as
using Option 1, thanks to the CP approach. However, less itera
tion are needed to get the same GAP due to the use of ESGI has
increased the dual cost faster.

Previous results are obtained using the step size rule which
gives the best performance. But what happens if the number of
iterations to obtain a good solution (inside the GAP Limit) is
greater? It could be because the problem cannot be solved using

~ --: -::-:-:-:-:-:-:-:-: -: -: - - - . ---------------------~----------

144 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 9, NO.1, JANUARY 2012

TABLE V
REsULTS ApPLYING LR AND CP METHOD (OPTION 1)

USING STEP SIZE RULE (i) ON EXAMPLE 1

Iter. Num. CPU Time Primal GAP
CP of iter. (sec) Cost (%)
0 295 0 655 4.97
~o 156 - :2:'c- =V34 --'2.42
30 137 2 634 2.59
20 114 3 634 2.76
10 91 4 634 3.09
5 56 4 634 3.43
I 77 46 634 Hl7

TABLE VI
RESULTS ApPLYING LR AND ESGI (OPTION 2)

USING STEP SIZE RULE (i) ON EXAMPLE 1

Num. CPU.Time Primal GAP
(J

of iter. (sec) Cost (%)

0.1 285 0 655 4.97
0.2 296 1 655 4.97
0.3 264 0 655 4.97
0.4 223 1 655 4.97
0.5 245 1 655 4.97
0.6 191 0 :655- j!;~.~

0.7 292 1 655 4.97
0.8 286 1 655 4.97
0.9 278 1 655 4.97

TABLE VII
RESULTS ApPLYING LR, CP, AND ESGI (OPTION 3)

USING STEP SIZE RULE (i) ON EXAMPLE 1

Iter.
CP

40

(J

0.6

Num.
of iter.

101

CPU Time Prima1
(sec) Cost

2 634

GAP
(%)

2.26

less iteration, then the situation would be the same as before
with the step size rule (b.50). However, imagine that the best
LR solution is the one using step size rule (i). Which impact CP
orland ESGI could have on the results? Following tables show
them.

2) Step Size Rule (i): As in previous results, the use of CP
reduce the number of iterations as it can be seen in Table V.
In this case, CP cause more impact than using step size rule
(b.50). GAPs are better in most of the cases and CPU times
have the same behavior, being the use of CP at each iteration,
the most CPU time consuming case. Selected CP configuration
for Option 3 is to use CP every 40 iterations because it has the
best GAP.

Table VI shows that in this case ESGI obtain similar results
than in Table m. Primal costs and GAPs are the same for all
the configurations, and there are variations in the number of it
erations. The best result is obtained by (Y = 0.6 and it use 191
iterations. This is the selected (Y for Option 3.

The result of the last test presented in Table VII and using
Option 3 improve all the other results with better GAP obtained
with less iterations. The CPU time is the same as using CP every
40 iterations in Table V.

3) Step Size Rule (h): The last selected step size rule (h)
simulate a case where number of iterations is high and GAP

TABLE VlII
REsULTS ApPLYING LR AND CP METHOD (OPTION 1)

USING STEP SIZE RULE (h) ON EXAMPLE 1

Iter. Num. CPU Time Primal GAP
CP of iter. (sec) Cost (%)

0 415 0 655 7.73
40 -348 4 634 4.28
30 391 5 634 4.28
20 281 5 634 4.45
10 161 5 634 4.45
5 100 5 634 4.62
I 467 367 634 6.38

TABLE IX
RESULTS ApPLYING LR AND ESGI (OPTION 2)

USING STEP SIZE RULE (h) ON EXAMPLE 1

Num. CPU Time Primal GAP
(J

of iter. (sec) Cost (%)

0.1 389 0 655 7.20
0.2 369 1 655 7.38
0.3 373 0 655 7.55
<t~,,~ .~!ltl:::' :.0 - ~615Q 1:20
5-:-5~- -37S· - 0 655 7.55
0.6 395 0 655 7.73
0.7 443 0 655 7.73
0.8 377 0 655 7.55
0.9 377 1 655 7.55

TABLE X
REsULTS ApPLYING LR, CP, AND ESGI (OPTION 3)

USING STEP SIZE RULE (h) ON EXAMPLE 1

Iter.
CP

40 0.4

Num.
of iter.

320

CPU Time
(sec)

3

Primal
Cost

634

GAP
(%)

3.93

Limit is not reached. Results in Tables vm and IX are the results
applying Options 1 and 2, respectively. These results are similar
than the other presented results with step size rules (b.50) and
(i). Table X shows the result of Option 3, and it improves the
results of Options 1 and 2. Gap and number of iterations are
improved.

Analyzing the results of Example 1, it can be seen that the
LR method is not robust enough because it depends on different
parameters. One of them is the step size parameters. Notice that
results of the LR method present variations depending on the
used step size rule. However, results obtained with LR, CP, and
ESGI with the three step size rule selected are quite similar.
Therefore, it is possible to ensure that applying the CP and ESGI
approaches the results do not depend on the step size rule at all.
Even so, a minimum tuning of LR parameters and some tuning
for CP and ESGI are still needed.

B. Example 2

In this case, a job shop scheduling problem from [1, Table
IV] is used. The problem consists in 33 machine types and 1
machine for each type, 127 jobs with a total of 184 operations,
and a time horizon of 350 units. Each operation has its process
time and there are tardiness weights taken fixed values 1.0 or
0.5. There are not earliness weights. Due dates for each job are
distributed along the time without overcoming the time horizon

---:-:-:-:-:-:-:-:---:-:-:---------"-

BUlL et al.: IMPROVEMENT OF LAGRANGIAN RELAXATION CONVERGENCE FOR PRODUCTION SCHEDULING 145

TABLE XI
RESULTS OF EXAMPLE 2 USING LR METHOD

WITH DIFFERENT STEP SIZE RULES

Step Num. CPU Time Primal GAP
Size of iter. (sec) Cost (%)

a 108 21 123856 16.21
b.OS 500 97 123856 10.53
b.20 50D. . '~"9'r·: J!;j:185p' .)~,l5
b.SO 428 84 119065 4.98

c 107 20 123856 15.02
d 107 20 123856 15.02
e 107 20 123856 15.02
f 500 97 123856 9.52
g 483 96 118870 4.95
h 464 94 118374 4.42

434 84 118752 4.87

TABLE XII
RESULTS ApPLYING LR AND CP METHOD (OPTION I)

USING STEP SIZE RULE (h) ON EXAMPLE 2

Iter. Num. CPU Time Primal GAP
CP of iter. (sec) Cost (%)

0 464 94 118374 4.42
40 41 21 +J67~4 . c;!lil9
30 55 22 1f/3400 4.97
20 23 16 116961 4.89
10 22 26 117154 4.93
5 16 25 115682 4.93
I 17 40 115756 4.82

but with some negative values, which means already delayed
jobs.

The parameters fixed for the stop criteria [(15)-(17)] are

~ = 0.001, n = 500, Gap Limit = 5%.

The LR method is applied as explained in Example 1
(Section VII-A) and Table XI shows the results using the
same structure than Table I. As in Example 1, tests are named
using the step size rule applied. Test a, c, d, and e stop criteria
is the proximity of the multipliers of consecutive iterations
(15); test b.OS, b.20, and f have reached the total number of
permitted iterations (16); and all the others tests have get a
GAP less than the fixed GAP Limit (17).

Selected tests are h (the test with the minimum GAP) and
b.20 (one of the tests which has reached the maximum number
of iterations and has a GAP greater than the GAP Limit). For
both step size rules, the problem is solved again as in Example 1.

1) Step Size Rule (h): Tables XII-XIV present the results
applying Option 1. .. 3, respectively, using step size rule (h). In
this case, the use ofCP (Option 1) improves the primal cost, and
thus, reduces significantly the number of iterations to reach the
GAP Limit, as in previous results. Depending on the value of
0-, the use of ESGI (Option 2) also improve the results of Op
tion 1. Two different values for 0- (ones with the best GAP) have
been selected from Table XIII. Option 3 with initial configura
tion (CP every 40 iterations and 0- = 0, 1) gets worst primal
cost and worst GAP than Option 1. Therefore, 0- = 0.4 is also
tested using CP every 40 iterations, and it obtains similar primal
cost and better GAP than Option 1 with CP every 40 iterations

TABLE XIII
RESULTS ApPLYING LR AND ESGI (OPTION 2)

USING STEP SIZE RULE (h) ON EXAMPLE 2

Num. CPU Time Primal GAP
()"

of iter. (sec) Cost (%)
0:11; ',30.5·-·-· 13'7. ·n8191 4.;33
0.2 461 97 118441 4.46
0.3 500 104 123856 9.24
O;{ .• .'-359 ··' . .81' . 1i8245 4,33
0.5 500 107 123856 9.23
0.6 399 87 118415 4.46
0.7 500 110 123856 9.22
0.8 500 108 123856 9.21
0.9 GOO 110 1238136 9.22

TABLE XIV
RESULTS ApPLYING LR, CP, AND ESGI (OPTION 3)

USING STEP SIZE RULE (h) ON EXAMPLE 2

Iter. Num. CPU Time Primal GAP
CP

()"
of iter. (sec) Cost (%)

40 0.1 41 20 117213 4.56
40 0.4 41 21 116800 3.99

TABLE XV
RESULTS ApPLYING LR AND CP METHOD (OPTION 1)

USING STEP SIZE RULE (b.20) ON EXAMPLE 2

Iter. Num. CPU Time Plimal GAP
CP of iter. (sec) Cost (%)

0 500 97 123856 9.15
40 41 19 116069 4.99
3~'. 64 24 116742 4.95
20 56 23 115963 4.98
10 27 20 115892 4.94
5 26 21 115521 4.66
1 17 36 115430 4.99

TABLE XVI
RESULTS ApPLYING LR AND ESGI (OPTION 2)

USING STEP SIZE RULE (b.20) ON EXAMPLE 2

Num. CPU Time Plimal GAP
()"

of iter. (sec) Cost (%)

0.1 500 108 123856 9.15
Q.~ :4;84· .. 39. 118483- c A.58
0.3 500 106 123856 9.15
0.4 406 85 118274 4.25
0.5 500 105 123856 9.15
0;6.- ~;:q-68---- '17 llStop -=--4:16
0.7 500 107 123856 9.14
0.8 500 108 123856 9.15
0.9 500 110 123856 9.14

(Table XII). The meaning of these results is that the dual con
vergence using the step size rule (h) is pretty good, and primal
convergence can be significantly improved applying CPo

2) Step Size Rule (b.20): Tables XV-XVII present the results
applying Option 1. .. 3, respectively, using step size rule (b.20).
The initial solution just using LR and the step size rule (b.20)
is not good (maximum number of iterations reached and GAP
greater then GAP Limit). Even so, Option 1 results in Table XV
are quite similar than results in Table XII in terms of number
of iterations, CPU time and GAP; and besides, primal costs of
Table XV are better than primal costs of Table XII. Option 2 gets

146 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 9, NO.1, JANUARY 2012

TABLE XVII
RESULTS ApPLYING LR, CP, AND ESGI (OPTION 3)

USING STEP SIZE RULE (b.20) ON EXAMPLE 2

Iter.
ep

30
30

0.2
0.6

Num.
of iter.

64
64

CPU Time
(sec)

24
24

Primal
Cost

116742
116742

GAP
(%)

4.95
4.95

similar results than previous examples, and Option 3 improves
the LR performance and the performance of Option 2. However,
Option 3 does not improve the performance of Option 1, and
Table XVII presents the results for two tests using CP every
30 iterations and two values of 0', and they are equal than the
result using CP every 30 iterations in Table XV. In this case,
arbitrary number of iterations and 0' values have been chosen
for Option 3. Some other configurations have been also tested
but not included in Table XVII (Option 3) because the obtained
results are the same than in Option 1.

C. Example 3

Ten different instances were generated to test the proposed
approaches using larger problems (in number of operations)
than the ones in previous examples, but with similar character
istics. The problem consists in ten machine types with a ran
domly generated number of machines from 1 to 3 in each one.
One hundred fifty jobs with a randomly generated number (from
1 to 10) of operations, and an average total of 825 operations.
Each operation with a number of alternative machine types ran
domly generated between 1 and 3, and these alternative machine
types are randomly generated between 1 and 10. The processing
time of each operation on an alternative machine type is set to a
nominal processing time (generated according to a uniform dis
tribution U[l, 5]) multiplied by a rate (generated according to a
uniform distribution U[0.8, 1.2]). Time horizon is fixed in 750,
due dates are distributed along the time (depending on the time
process of each job) without overcome the time horizon but with
some negative values (already delayed jobs). Tardiness and ear
liness weights of all jobs are set to 1 and 0.1, respectively.

The parameters fixed for the stop criteria [(15)-(17)] are

~ = 0.001, n = 300, Gap Limit = 5%.

Step size rules, number of iterations to apply CP, and 0' are
randomly fixed, and LR parameters are the same for all the in
stances, without particular tuning depending on the problem,
which decrease the quality of the LR solutions. This tuning is
not made because the target is to show the benefits of using CP
and ESGI approaches together with LR to obtain better solution.
Table xvm present the results for the ten instances. Each row
corresponds to an instance and they will be called BOI to B 10,
following the row order. Two test were made for each instance:
LR test and LR, CP, and ESGI test. Column 1 is the step size
used for the instances, column 2 (Iter. CP), and column 3 (0')
are just used for the LR, CP, and ESGI test, and they are 0 for
the LR test. Columns 4-7 include the results from both test sep
arated by a dash: LRlLR,CP, and ESGI.

Results of Table XVIII show that Primal Cost is improved
for all instances but B08 when LR, CP, and ESGI is applied.
Regarding the other parameters, results can be classified in 3

TABLExvrn
RESULTS OF EXAMPLE 3

Step Iter. Num. CPU Primal GAP
Size CP (J of iter. Time (sec) Cost (%)

jr~4:~}~~§,~t~:tl~§~~,~:iI~~~:§~j,-~~QP§4%~~~~Q;JfcflJ!~Y€!~~F~$
c 40 0.8 300/300 1771/2479 231128/224429'-9:3276.37

b.20 40 0.7 300/300 1231/2009 376142/364261 8.80/5.49
1i;,@Jiljf~]f~lfi~i'l~&r~~~~~~~l!811'~?li§.]iiJ!,~~~6'~~~~~~~f\~
b.OS 30 0.9 300/300 1222/1739 293922/286826 9.48/6.87
b.SO 20 0.9 300/3001299/1982 297769/290053 9.20/6.36
flOO~830Djl11 . 1532/911 168204/165605 5.80/4.58

~~~;f~?~S~~~l~l~~~~'!~:JIQ,~*¥~~t~~~p'i~~I~~~l:t~tg;~~ 
-g'40d.4300/3Q(fl3307f975 lS8293/1826388:MTs'-65 
hl0 0.4300/241 1437/1281 216349/214580 5:56/4.87 

types: A) when the reached stop criteria is the number of itera
tions for both tests (case ofB02, B03, B05, B06, and B09, with 
white background in Table XVill); B) when the reached stop 
criteria is the umber of iterations for the LR test and the gap 
for the LR, CP, and ESGI test (case of B07 and B 1 0, with light 
gray background); and C) when the reached stop criteria is the 
gap for both tests (case of B01, B04 and B08, with dark grey 
background). Multipliers criteria has not been reached for any 
instance. Even half of the results are of type A, authors consider 
that most of results could be of type B or C if some tuning de
pending on the instances would be made. 

Depending on these defined types, it can be seen that, for re
sults of type A, the average gap improvement from using LR 
to using LR, CP, and ESGI is almost of 3 units. For example, 
B02 gap is 9, 32% using LR, and 6, 37% using LR, CP, and 
ESGI. However, LR, CP, and ESGI is too time consuming for 
these types of results, because all the jobs are optimized every 
time ESGI try to set a new point with better dual cost; there
fore, there are more optimizations during the same amount of 
iterations, which increases the CPU time. For example, the LR 
method gets a solution for B02 in 1771 s, and LR, CP, and ESGI 
in 2479 s, 40% of CPU time increase. Type B results already 
show that CP and ESGI approaches improve the convergence of 
LR obtaining better gaps and less number of iterations and CPU 
time. Finally, results of type C really show the convergence im
provement when ,both approaches are used together with LR. 
The gap of both tests (LR and LR, CP, and ESGI) are ± 1 % 
for results of type C. However, the gap criteria is reached faster 
when applying CP and ESGI. In fact, LR, CP, andESGI is from 
40% (instance B01) to 60% (instance B08) faster than LR. For 
example, instance B08 gaps are 4, 14/4,79, but LR reaches the 
gap after 80 iterations and 423 s, and LR, CP, and ESGI after 31 
iterations and 169 s. Number of iterations is improved by 61 % 
and CPU time by 60%. 

The conclusions of Example 3 is that the approaches improve 
the convergence of the LR method by at least 40% less iterations 
and CPU time if the number of iterations of the stop criteria is 
big enough (depending on the problem). 

The research idea is to develop a methoo. able to obtain better 
solution than the LR method applying different approaches to
gether just once. However, if there is the possibility to make 
several tests as made in the first two examples of this paper, it 
would be helpful to use the best dual and primal solution of all 
the tests to generate the final solution and the final GAP. In this 
case, the best primal solution of Example 1 has cost 634 and 



BUlL e/ al.: IMPROVEMENT OF LAGRANGIAN RELAXATION CONVERGENCE FOR PRODUCTION SCHEDULING 147 

the best GAP is l.60% due to the best dual cost is 624. For Ex
ample 2, the best primal and dual costs are 115 430 and 113 
482, respectively, and the GAP is 1.72%. If several tests can not 
be made (as in Example 3) and the number of iterations is not 
a strong criteria, LR, CP, and ESGI applied together give better 
performance than just using LR. 

vm. CONCLUSION 

This paper presents a new approach for the LR method (using 
SG) to improve its performance speeding up the convergence. 
The ESGI approach has been implemented and it improves the 
convergence of the LR method by speeding up the dual cost 
convergence. At the same time, the LR and CP method pre
sented in [5] has been updated achieving better performance, 
which means less number of iterations and CPU time to get the 
expected GAP. CP and ESGI are combined together with the 
LR method and the results are better than applying just the LR 
method, and better or equal than the results obtained by applying 
CP or ESGI separately with LR. 

ESGI approach could be improved in a future work to deter
mine the step variation ((T) at each iteration instead of to use a 
fixed value for all iterations. Empirical analysis of the perfor
mance sensitivity with respect to (T is considered as a new re
search to be made in the future. 

Future work must also include some algorithms to fix the 
needed parameters of the LR method and the CP approach 
without making tests, just using the knowledge on the sched
uling problem to solve. Thus, even an operator in an industry, 
without deep lmowledge on the LR method or CP, could obtain 
good solutions for its scheduling problem. 

Besides the improvement of the presented approaches, fu
ture work also includes a new implementation of the entire LR 
method and the approaches on a Constraint Logic Programming 
framework, which could add a better guide to find as better so
lutions as possible. Other approaches could be also introduced 
if they permit the obtaining of better solutions. 

The ESGI approach has been developed when SG is used in 
the LR method. Other methods, as could be Surrogate Subgra
dient (SSG) [9], are used when problems are too large and op
timizing all subproblems takes too much CPU time. SSG does 
not optimize all subproblems, each iteration, and it implies that 
ESGI could not be applied as presented in this paper. How to 
apply the ESGI approach when using SSG is also in the future 
work that authors will confront. 

REFERENCES 

[1] D. J. Hoitomt, P. B. Luh, and K. R. Pattipati, "A practical approach to 
job shop scheduling problems," IEEE Trans. Robot. Autom., vol. 9, no. 
1, pp. 1-13, 1993. 

[2] T. Irohara, "Lagrangian relaxation algorithms for hybrid flow-shop 
scheduling problems with limited buffers," Int. J. Biomed. Soft 
Comput. Human Sci., vol. 15, no. 1, pp. 21-28, 2010. 

[3] M. Wallace, Constraint Programming, ser. The Handbook of Applied 
Expert Systems. Boca Raton, FL: CRC Press, 1998. 

[4] E. Tsang, Foundations of Constraint Satisfaction. San Diego, CA: 
Academic Press Limited, 1993. 

[5] R. Buil, P. B. Luh, and B. Xiong, "Synergy of lagrangian relaxation 
and constraint programming for manufacturing scheduling," in Proc. 
6th World Congr. Intel!. Control Autom., Jun. 2006, pp. 7410-7414. 

[6] J. Wang, P. B. Luh, X. Zhao, and J. Wang, "An optimization-based 
algorithm for job shop scheduling," SADHANA, J. Indian Acad. Sci., 
a Special Issue on Competitive Manufacturing Systems, vol. 22, no. 2, 
pp. 241-256, Apr. 1997. 

[7] H. Chen, P. B. Luh, and L. Fang, "A time-window based approach for 
job shop scheduling," in Proc. IEEE Can! Robot. Autom., May 2001, 
pp. 842-847. 

[8] H. Chen, C. Chu, and J. M. Proth, "An improvement of the lagrangian 
relaxation approach for job shop scheduling: A dynamic programming 
method," IEEE Trans. Robot. Autom., vol. 14, no. 5, pp. 786-795,1998. 

[9] X. Zhao, P. B. Luh, and J. Wang, "The surrogate gradient algorithm 
for lagrangian relaxation method," J. Opt. Theory Appl., vol. 100, no. 
3,pp. 699-712,1999. 

[10] S. Boyd, L. Xiao, and A. Mutapcic, "Subgradient methods," Oct. 
2003. [Online]. Available: http://www.stanford.edu/class/ee392o/sub
gradmethod.pdf 

RomanBuil received the B.S. degree in mathematics 
and the M.S. degree in industrial engineering-ad
vanced production techniques from the Universitat 
Autonoma de Barcelona, Barcelona, Spain, in 
2002 and 2004, respectively. Currently, he is 
working towards the Ph.D. degree in industrial 
engineering-advanced production techniques at the 
the Universitat Autonoma de Barcelona. 

He is an Assistant Teacher at the Department of 
Telecommunications and Systems Engineering, Uni
versitat Autonoma de 'Barcelona. His research inter

ests include modeling and simulation methodologies, optimization techniques, 
production planning and decision making for production planning and logistics. 
He has been involved in industrial projects working as consultant of DLM-so
lutions and DLM-aeronautics. 

Miquel Angel Piera received the B.S. degree in 
computer science from the Universitat Autonoma 
de Barcelona, Barcelona, Spain, in 1988, the M.S. 
degree in control engineering from the University 
of Manchester Institute of Science and Technology, 
Manchester, U.K., in 1991, and the Ph.D. degree in 
computer science from the Universitat Autonoma de 
Barcelona in 1993. 

He is a Professor with the Universitat Autonoma 
de Barcelona since 1994, Head of a Research Group 
in Modeling and Simulation of Logistic and Produc

tion Systems (LogiSim) since 2008. Founder of a Spin-off company focused on 
modeling and simulation in the logistic field (DLM-Solutions) since 2006. His 
research interests focus on logistic systems, causal modeling, and discrete-event 
system simulation. 

Peter B. Luh received the B.S. degree in electrical 
engineering from National Taiwan University, Taipei, 
in 1973, the M.S. degree in aeronautics and astro
nautics engineering from the Massachusetts Institute 
of Technology (MIT), Cambridge, in 1977, and the 
Ph.D. degree in applied mathematics from Harvard 
University, Cambridge, in 1980. 

Since then, he has been with the University of 
Connecticut, and currently is the SNET Professor 
of Communications and Information Technologies 
and the Head of the Department of Electrical and 

Computer Engineering. He is also a member of the Chair Professors Group 
at the Center for Intelligent and Networked Systems, Department of Au
tomation, Tsinghua University, Beijing, China. He is interested in planning, 
scheduling, and coordination of design, manufacturing, and supply chain 
activities; configuration and operation of elevators and HVAC systems for 
normal and emergency conditions; schedule, auction, portfolio optimization, 
and load/price forecasting for power systems; and decision-making under 
uncertain or distributed environments. 

Dr. Luh is Vice President of Publication Activities for the IEEE Robotics 
and Automation Society, an Associate Editor of lIE Transactions on Design 
and Manufacturing, an Associate Editor of Discrete Event Dynamic Systems, 
was the founding Editor-in-Chief of the IEEE TRANSACTIONS ON AUTOMATION 
SCIENCE AND ENGINEERING (2003-2007), and the Editor-in-Chief of IEEE 
TRANSACTIONS ON ROBOTICS AND AUTOMATION (1999-2003). 


